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In this work, we propose a charge inverter that substantially increases the hole injection efficiency

for InGaN/GaN light-emitting diodes (LEDs). The charge inverter consists of a metal/electrode, an

insulator, and a semiconductor, making an Electrode-Insulator-Semiconductor (EIS) structure,

which is formed by depositing an extremely thin SiO2 insulator layer on the pþ-GaN surface of a

LED structure before growing the p-electrode. When the LED is forward-biased, a weak inversion

layer can be obtained at the interface between the pþ-GaN and SiO2 insulator. The weak inversion

region can shorten the carrier tunnel distance. Meanwhile, the smaller dielectric constant of the

thin SiO2 layer increases the local electric field within the tunnel region, and this is effective in pro-

moting the hole transport from the p-electrode into the pþ-GaN layer. Due to the improved hole

injection, the external quantum efficiency is increased by 20% at 20 mA for the 350� 350 lm2

LED chip. Thus, the proposed EIS holds great promise for high efficiency LEDs. VC 2016
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4945257]

Replacing incandescent and fluorescent light sources,

III-nitride based light-emitting diodes (LEDs) are expected

to make significant contribution in relieving the global

warming effect as a result of their energy saving feature if

used at world scale.1 However, in order to increase the sav-

ing in energy consumption and the scale of their use, there is

room for further boosting their external quantum efficiency

(EQE). One of the bottlenecks that hinder further enhance-

ment of the quantum efficiency for III-nitride LEDs is the

limited hole injection into the quantum wells.2 The hole

injection efficiency into the multiple quantum wells

(MQWs) is affected by various factors, including the

inhomogeneous hole concentration in the quantum wells, the

blocking effect caused by the p-electron blocking layer (p-

EBL), and the hole transport from the p-electrode to the pþ-

GaN region. The non-uniform hole distribution that often

takes place in the MQWs leads to a strong hole accumulation

in the quantum wells close to the p-GaN side.3 The hole

injection can be homogenized by doping the quantum bar-

riers with Mg acceptors,4,5 using the InGaN instead of the

GaN as the quantum barriers,6 properly reducing the quan-

tum barrier thickness,7 increasing the thickness of the quan-

tum well close to the p-GaN layer8 and/or employing the

cascaded active region.9 As is well known, the p-EBL is

adopted in the III-nitride LEDs to reduce the electron leak-

age, which nevertheless also blocks the hole injection due to

the band offset between the p-EBL and the subsequent p-

GaN layer.10 Therefore, different p-EBL structures have

been reported to increase the hole injection, such as the

superlattice p-EBL11 and staircase p-EBL.12 Recently, the

AlGaN/GaN/AlGaN p-EBL with a very thin GaN insertion

layer is proposed where the valence subbands in the thin

GaN insertion layer can significantly reduce the p-EBL bar-

rier height for holes.13 The p-EBL blocking effect can also

be suppressed by making holes “hot”14 and/or increasing the

hole concentration in the p-GaN layer through a hole modu-

lator.15 Last but not the least, the hole injection is also sub-

stantially impacted by the pþ-GaN and the p-electrode.

Considering the low Mg activation efficiency,16 it is very dif-

ficult to shorten the width of the surface depletion region in

the pþ-GaN layer, and this can cause the negative effect on

the hole injection. In this work, we propose a charge inverter

by growing a very thin SiO2 insulator on the pþ-GaN sur-

face, and the pþ-GaN surface will present a weak inversion

layer when the device is biased. The weak inversion layer

can reduce the tunnel region width, and in the meanwhile,

compared to the pþ-GaN, the smaller dielectric constant of

the SiO2 layer also produces a stronger electric field, which

can further promote hole injection. Most importantly, such a

charge inverter can reduce the forward voltage and increase

the quantum efficiency of the LED device. In addition, the

charge inverter can be easily fabricated without increasing

the fabrication complexity.

The physical mechanism of the proposed charge inverter

for promoting the hole injection from the p-electrode into the

pþ-GaN layer is illustrated in Fig. 1. We use ITO as the cur-

rent spreading layer, which is a heavily doped n-type semi-

conductor. For device A in Fig. 1(a) that does not have the

charge inverter, the pþ-GaN/ITO behaves as the pþ-GaN/

a)Electronic addresses: zh.zhang@hebut.edu.cn; wbi@hebut.edu.cn; volkan@

stanfordalumni.org; and sunxw@sustc.edu.cn
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ITO tunnel region (PITR). Device B with the charge inverter

is demonstrated in Fig. 1(b), from which we can see the

inserted insulator between the pþ-GaN and the ITO layer,

and we call this semiconductor-insulator tunnel region

(SITR). Under forward-bias, the electrons will tunnel

through the PITR and SITR for device A and device B,

respectively, and then the holes are left and injected into the

MQW region. The advantage of the SITR design is the for-

mation of the weak inversion layer at the pþ-GaN/insulator

interface when the device is forward-biased [see Fig. 1(b)].

The inversion layer is able to attract and confine the elec-

trons at the pþ-GaN/insulator interface. This can then sub-

stantially shorten the width of the tunnel region, which can

significantly increase the carrier tunnel efficiency.17

Meanwhile, if the dielectric constant of the insulator is

smaller than the GaN and the ITO layers, the electric field

within the tunnel region can also be significantly enhanced,

which is very useful to further facilitate the hole injection.

The effectiveness of the charge inverter in improving

the LED performance is tested with blue InGaN/GaN LEDs,

which were grown by the metal-organic chemical vapor dep-

osition (MOCVD) system. The epi-wafers were initiated on

the [0001] oriented planar sapphire substrate. We first grew

the 20 nm thick GaN nucleation layer followed by the 4 lm

thick unintentionally n-type GaN layer (u-GaN). The 2 lm

n-GaN layer with the Si doping concentration of

5� 1018 cm�3 was achieved by the diluted SiH4 precursor.

Then, we grew the five-period In0.15Ga0.85N/GaN MQW

stack in which the quantum well and the quantum barrier is

3 nm and 12 nm thick, respectively. We did not adopt any

intentional dopants in the quantum barriers. The MQWs

were then capped by the 25 nm thick p-Al0.20Ga0.80N EBL

structure to better confine the electrons. The holes are pro-

vided by the p-GaN layer, which was grown after the p-EBL.

The thickness of the p-GaN layer is 0.2 lm. The p-type con-

ductivity was realized by doping the epi-wafer with Mg dop-

ants. We assume 1% as the ionization ratio for the Mg

dopants, and the effective hole concentration in the p-EBL

and the p-GaN layer is estimated to be 3� 1017 cm�3. We

also grew the heavily Mg doped GaN layer (pþ-GaN) with

the 20 nm thickness to enable the ohmic contact. The whole

epi-wafers were finally in situ annealed (600 s at the temper-

ature of 720 �C) in the N2 atmosphere.

After the epitaxial growth, we measured the surface

roughness of the pþ-GaN layer for the LED epi-wafer by the

Atomic Force Microscope (AFM). The size of the scanned

window is 1� 1 lm2, and the scan rate is set to 1 Hz. The sur-

face morphology for the tested LED is presented in Fig. 2,

from which we can see that the surface roughness fluctuation

is smaller than 1 nm. Therefore, in order to obtain the continu-

ous film while not causing significant current blocking effect,

we tentatively deposited an insulation layer as thin as 1 nm on

the pþ-GaN surface.

The LED wafers were then fabricated by following the

standard fabrication process. The LED epi-wafers were pat-

terned into a mesa of 350� 350 lm2 by the reactive ion etch

FIG. 1. Schematic energy band dia-

grams (layer thickness not in scale) for

(a) device A without the charge in-

verter and (b) device B with the charge

inverter. The carrier transport includes

three processes: process 1 means the

nonequilibrium electrons (solid circles)

travel to the ITO layer from the con-

duction band of the pþ-GaN layer, pro-

cess 2 means the electron interband

tunneling which then simultaneously

produces the holes (open circles), and

the holes will then travel (process 3) to

the MQW region. The charge inverter

and the inversion layer are also shown

in Fig. (b). EC, EV, Efe, and Efh repre-

sent the conduction band, valence

band, quasi-Fermi level for electrons,

and quasi-Fermi level for holes,

respectively.

FIG. 2. The AFM image and surface roughness of the pþ-GaN layer for a

complete InGaN/GaN MQW LED before depositing the insulation film.
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(RIE) technology. For device A, we formed the ITO layer on

the pþ-GaN layer by E-beam and the ITO layer thickness

was 50 nm. For device B, before depositing the 50 nm thick

ITO layer, we first grew a thin SiO2 layer at 300 �C on the

pþ-GaN surface, and the SiO2 layer was obtained by opti-

mizing the PECVD system and the thickness was set to

�1 nm. The thin SiO2 layer was patterned and wet etched by

using the diluted HF acid. Then, for both devices, the ITO

layer was annealed in the ambient of N2:O2 (4:1) at the tem-

perature of 630 �C for 1 min. We finally deposited the Ti/Au

(30 nm/100 nm) metal stack on both the ITO surface and the

n-GaN surface to form the p-electrode and the n-electrode.

We calculated the energy band diagrams [see Fig. 3(a),

data calculated at 100 mA] in the vicinity of the PITR and

the SITR for devices A and B, respectively. The numerical

calculations were conducted by APSYS, which is able to

solve the Poisson and Schr€odinger equations self-

consistently with the proper boundary conditions. The carrier

transport was modeled by the carrier drift and diffusion proc-

esses. Besides the thermionic emission and field emission,

we also considered the interband tunneling for the PITR and

the SITR if we treat the ITO layer as the heavily doped

n-type semiconductor. The piezoelectric and spontaneous

polarization effect was taken into account for the [0001]

oriented InGaN/GaN LEDs,18 and here, we empirically

assumed the 40% polarization level due to the strain release

by generating dislocations.5,14,15 Other important factors

such as the band offset for InGaN/GaN and GaN/AlGaN

heterostructures, Auger recombination coefficient, and

Shockley-Read-Hall recombination can be found in our

previous reports.5,14,15

Investigations to Fig. 3(a) illustrate that the width of the

SITR is substantially reduced compared to that of the PITR.

The width of the PITR is �3.5 nm while the width for the

SITR is �2 nm. Note the tunnel region width is defined as

the distance between the two points at which the quasi-Fermi

level for holes intersects with the valence band of the pþ-

GaN layer and the conduction band of the ITO layer, respec-

tively. The reduced tunnel width of the SITR is well attrib-

uted to the charge inverter, which enables the inversion layer

at the pþ-GaN surface. The charge inversion in the SITR is

evidenced by the alignment of the quasi-Fermi level (Efe) of

electrons and the conduction band (EC). The Efe overtakes

the EC in the energy level at the relative position of

0.8214 lm for the SITR as demonstrated in Fig. 3(a), and

thus, the electrons accumulate at the interface of the pþ-GaN

layer and the SiO2 insulator. The electron accumulation

shrinks the surface depletion in the pþ-GaN layer, which

gives rise to the reduced width of the SITR for LED B.

However, due to the lack of the SiO2 layer, the charge inver-

sion will not happen in the PITR as illustrated in Fig. 3(a).

This leads to a wider surface depletion region in the pþ-GaN

layer and makes the interband tunneling efficiency low.

Meanwhile, according to our calculations, the width varia-

tion of PITR and SITR is negligible at different set biases in

this work, which is consistent with the report in Ref. 17. We

also show the electric field profiles for the PITR and SITR in

Fig. 3(b) at 100 mA. According to Fig. 3(b), the electric field

intensity for the SITR is larger than that for PITR, thanks to

the lower dielectric constant of the SiO2 layer (�r¼ 3.9) com-

pared to 8.9 of the pþ-GaN layer. The enhanced electric field

can better promote the carrier interband tunneling efficiency

of the SITR for device B.17 Note that the SiO2 layer thick-

ness in the charge inverter has to be optimized and makes it

properly thin. If the SiO2 layer is too thick, the SITR will be

significantly widened and this can severely block the hole

injection, which leads to a poor quantum efficiency. We shall

also pay attention to the dielectric constant (�r) of the thin in-

sulator layer in the charge inverter, and a �r as low as possi-

ble is required to achieve the high electric field magnitude in

the tunnel region.

We measured and calculated the device current in terms

of the applied voltage (I-V) for the fabricated devices, which

is presented in Fig. 4. We can see that the forward voltage of

device B is smaller than that of device A, and this is ascribed

to the facilitated hole injection efficiency from the

p-electrode into the pþ-GaN layer for device B. Meanwhile,

the increased electric field in the thin SiO2 layer also enables

a more smooth hole transport and improves the injected cur-

rent. Note the experimentally measured forward voltage for

both devices can be further reduced if the thermal annealing

condition for the ITO layer is fully optimized.

The numerically calculated hole density profiles are

illustrated in Fig. 5. Clearly, we can observe that the hole

concentration in the quantum wells for device B is higher

FIG. 3. Numerically calculated (a) energy band diagrams, (b) electric field

profiles for the PITR and SITR at 100 mA. Here, EC, EV, Efe, and Efh denote

the conduction band, valence band, quasi-Fermi level for electrons, and

quasi-Fermi level for holes, respectively. The Efe in (a) is higher than EC at

the relative position of 0.8214 lm, and this results in the electron accumula-

tion and a reduced tunnel width. The positive direction of the electric field is

pointed from the ITO layer to the pþ-GaN layer.
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than that for device A. As has been mentioned earlier, the

charge inverter helps to reduce the width of the tunnel junc-

tion, and the SiO2 layer with a lower �r increases the electric

field intensity, which result in the enhanced hole transport

from the p-electrode to the pþ-GaN layer, and this simultane-

ously increases the hole injection efficiency into the quantum

wells. Since the quantum barriers in the proposed device is

not engineered in the way of favoring the uniform hole distri-

bution in the MQW region, we see the lowest hole concen-

tration in the quantum well closest to the n-GaN side. The

holes in the quantum barriers can be more homogeneously

distributed by, e.g., employing the InGaN as the quantum

barriers.6

The impact of the charge inverter is justified by meas-

uring the optical performance for devices A and B as shown

in Figs. 6(a) and 6(b), respectively. Fig. 6(a) presents the

electroluminescence (EL) spectra for the two devices, for

both of which the peak emission wavelength is 450 nm.

Device B produces stronger EL intensity compared to device

A within the tested current range. Note that, as the injection

current increases, the peak emission wavelengths for both

devices slightly show the blue shift that is due to the polar-

ization screening in the quantum wells by the injected

carriers, and then show the red shift that is caused by the

self-heating effect. We also show the EQE and the optical

power as a function of the injected current for both devices

A and B in Fig. 6(b). We can see that device B has both

higher EQE and optical power than device A, thanks to the

promoted hole injection efficiency enabled by the charge in-

verter. For example, the EQE is increased by 20% at the

injection current level of 20 mA for the 350� 350 lm2 LED

chip. However, if the current is further increased to 180 mA,

the power enhancement for device B becomes less obvious,

and the efficiency enhancement is smaller than 10%, such

that though device B can increase the EQE, the efficiency

droop is less improved, which is, for example, 27.6% for de-

vice A and 48.6% for device B at 100 mA. The observed effi-

ciency droop for device B is likely due to the electron

leakage caused by the inversion layer at the pþ-GaN/SiO2

interface, given that more nonequilibrium holes are produced

at the pþ-GaN/SiO2 interface and the inversion layer occurs,

which attract more electrons to bypass the MQW region.

Thus, more efforts are necessary to optimize the electron

injection layer and/or the p-EBL so that both the efficiency

enhancement and the reduced efficiency droop can be

obtained.

To summarize, in this work, we have reported a charge

inverter for III-nitride LEDs. The effectiveness of the charge

inverter is probed both numerically and experimentally by

growing and fabricating the blue InGaN/GaN LEDs. The

studies show that the charge inverter can reduce the width of

the tunnel region by forming an inversion layer at the pþ-

GaN surface. By adopting the insulator with a lower

FIG. 4. Experimentally measured current-voltage characteristics for devices

A and B. Inset shows the numerically calculated current-voltage characteris-

tics for devices A and B.

FIG. 5. Hole density profiles for devices A and B at the injection current

level of 100 mA.

FIG. 6. Experimentally measured (a) EL spectra, (b) EQE, optical power

and the power enhancement at different injection current levels for devices

A and B. The mesa size for the tested devices is 350� 350 lm2.
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dielectric constant (e.g., SiO2), the electric field in the tunnel

region can also be increased, which further promotes the

hole injection. For that reason, the external quantum effi-

ciency for the proposed LED device that has the mesa area

of 350� 350 lm2 is increased by 20% at 20 mA. Although

the efficiency droop caused by electron leakage for the pro-

posed device with the charge inverter is observed, one can

minimize the electron leakage by increasing the blocking

effect of the p-EBL, adopting the electron cooler and/or the

n-EBL to reduce the thermal energy of electrons.19–22 The

charge inverter provides an easy way to enhance the hole

injection and increase the quantum efficiency, and we

believe it is especially promising for the UV LEDs which

use p-AlGaN to provide the hole conduction, since compared

to the pþ-GaN layer, the pþ-AlGaN layer can have a even

larger surface depletion region.
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Foundation of China (Project No. 51502074).
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