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InGaN/GaN light-emitting diodes (LEDs) grown along the [0001] orientation inherit very strong

polarization induced electric fields. This results in a reduced effective conduction band barrier

height for the p-type AlGaN electron blocking layer (EBL) and makes the electron blocking effect

relatively ineffective and the electron injection efficiency drops. Here, we show the concept of

polarization self-screening for improving the electron injection efficiency. In this work, the pro-

posed polarization self-screening effect was studied and proven through growing a p-type EBL

with AlN composition partially graded along the [0001] orientation, which induces the bulk polar-

ization charges. These bulk polarization charges are utilized to effectively self-screen the positive

polarization induced interface charges located at the interface between the EBL and the last quan-

tum barrier when designed properly. Using this approach, the electron leakage is suppressed and

the LED performance is enhanced significantly. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4885421]

III-nitride based light-emitting diodes (LEDs) are con-

sidered as the ultimate solid state light sources to replace

conventional lighting sources.1 Thus, substantial efforts have

been devoted to improving the efficiency for InGaN/GaN

LEDs. One of the obstacles hindering the LED performance

is the electron leakage, which has been regarded one of the

root causes of the efficiency droop. Therefore, a p-type

AlGaN electron blocking layer (EBL) is often utilized to pre-

vent the electron overflow. As well known, InGaN/GaN

LEDs grown along [0001] orientation possess very strong

positive polarization charges at the GaN/p-AlGaN EBL

interface, which lowers the effective conduction band barrier

height for electrons, thus making the EBL relatively ineffec-

tive in confining the electrons. One can consider enhancing

the electron injection efficiency by increasing the AlN com-

position or the thickness of the p-type AlGaN EBL. This

approach nevertheless increases the barrier height for holes

and leads to a reduced hole injection efficiency.2 Therefore,

it is quite critical to increase the electron confinement effi-

ciency without sacrificing any hole injection. One effective

way to improve the electron confinement efficiency is to

eliminate/suppress the polarization mismatch between the

p-type EBL and the last GaN quantum barrier. In fact, the

polarization matched p-type InAlN EBL has been proven to

be very useful in reducing the electron leakage, enhancing

the LED performance and reducing the efficiency droop.3,4

However, to grow the high-quality InAlN EBL is very chal-

lenging compared to the conventional AlGaN EBL.

Alternatively, one can employ the polarization inverted

p-type AlGaN EBL to suppress the electron leakage level,5

which can be achieved, for example, by bonding the [0001]

oriented p-GaN/p-AlGaN heterojunction onto the [0001] ori-

ented InGaN/GaN multiple quantum well (MQW) stack. The

approach however has to take the damaged interface during

the wafer bonding process into consideration when the dam-

aged interface acts as the carrier sink.

In this work, different from the previous reports, the

polarization mismatch between the p-type EBL and the last

GaN quantum barrier is proposed to be alleviated by taking

advantage of the polarization self-screening effect. Here, the

polarization self-screened EBL is realized through grading

the AlN composition in the p-type AlGaN EBL. As a result,

the effective conduction barrier height is increased and the

electron leakage is significantly suppressed. The devices

with the proposed polarization self-screened EBL demon-

strate superior optical performance compared to the devices

with the conventional EBL.

The concept of the proposed self-screened EBL is

delineated in Fig. 1. Figs. 1(a) and 1(b) illustrate the conven-

tional p-type EBL and the proposed p-type polarization self-

screened EBL. As well known, the conduction band barrier

height (Ub: defined as the energy difference between the con-

duction band edge and the Fermi-level for electrons)

between the last quantum barrier (LB) and the p-type EBL is

given by Ub ¼ DEC � kT � lnðnLB=EBL=NCÞ,6 where DEC is

the conduction band offset between the last quantum barrier

and the p-type EBL, k is the Boltzmann constant, T is the

carrier temperature, NC is the effective electron density of

states, and nLB=EBL is the electron concentration accumulated

at the interface of the last quantum barrier and the p-type

EBL. Unambiguously, one can increase Ub by increasing

DEC between the last quantum barrier and the p-type EBL

through increasing the level of Al composition. This

approach, however, simultaneously increases the valancea)Electronic addresses: exwsun@ntu.edu.sg and volkan@stanfordalumni.org
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band offset and thus retards the hole transport. Another alter-

native approach for increasing Ub can be obtained by reduc-

ing the carrier temperature, where the electron

thermalization can be realized by using either the InGaN

electron cooler7,8 or the n-type AlGaN EBL.9 The other

approach for a larger Ub is realized by reducing nLB=EBL.

According to Fig. 1(a), for the [0001] oriented epitaxial

films, the polarization induced positive charges

(�1� 1017 m�2 for the typical GaN/Al0.20Ga0.80N hetero-

structure in the InGaN/GaN LED architecture) at the inter-

face of the last quantum barrier and the p-type AlGaN EBL

lead to a very strong electron accumulation, and thus a high

nLB=EBL and a severe electron leakage level. Nevertheless,

the polarization induced positive charges between the last

quantum barrier and the p-type EBL can be partially

screened in Fig. 1(b), in which the AlN composition of the

p-type AlGaN is decreasing along the [0001] growth orienta-

tion (i.e., AlxGa1�xN). Here, the polarization induced nega-

tive bulk charges are generated in the AlxGa1�xN

region.10–15 The negative charges are attributed to the com-

pressive strain in the AlxGa1�xN region when the AlN com-

position is linearly decreasing along the [0001] orientation.

The bulk charge density will be discussed and calculated

subsequently. Hence, these charges can partially compensate

the positive interface charges.16 This results in a reduced

electron density at the interface of the last quantum barrier

and the p-type EBL, which suppresses nLB=EBL and thus the

electron leakage. As a result, enhanced electron injection

efficiency, improved optical output power, and reduced effi-

ciency droop are achieved.

To prove the effectiveness of the proposed polarization

self-screened p-type EBL structure illustrated in Fig. 1(b) in

improving the InGaN/GaN LED performance, two LED epi-

taxial films (LEDs I and II) have been grown on the c-plane

sapphire substrates by a metal-organic chemical vapor depo-

sition (MOCVD) system. The growth was initiated on a

30 nm thick GaN buffer layer and then followed by an unin-

tentionally n-type GaN (u-GaN) layer of 4 lm in thickness.

After growing the u-GaN layer, a 2 lm thick n-GaN layer

doped by Si dopants was grown serving as the electron

source layer with an electron concentration of 5� 1018 cm�3.

Then, the light emitting layers for the two LED samples con-

sist of five-pair In0.15Ga0.85N/GaN MQWs, in which the

thickness for each quantum well and quantum barrier is set

to 3 and 12 nm, respectively. The two samples differ from

each other only in the EBL architectures. In LED I, a con-

ventional 20 nm p-type Al0.20Ga0.80N EBL was grown. In

LED II, the AlN was compositionally graded from 20% to

0.0% within the first 10 nm thickness following a linear pro-

file, which is p-type doped, while the remaining 10 nm was

reserved for the p-type Al0.20Ga0.80N EBL. Finally, both

LED samples were covered by a 0.2 lm p-GaN layer. The

p-type conductivity was realized through Mg dopants, and

the effective hole concentration in the p-type layer was esti-

mated to be 3� 1017 cm�3. It should be noted that, the

AlGaN layer thickness with grading composition is crucial

in producing the three-dimensional hole gas, thus in order to

exclude the effect of the three-dimensional hole gas15,17 on

the enhanced hole injection efficiency and the improved

LED performance, we purposely graded the AlN composi-

tion within a thin thickness of half of the whole p-type EBL

thickness. The electroluminescence (EL) spectra and the op-

tical power output for both LEDs I and II were characterized

by a calibrated integrating sphere attached to an Ocean

Optics spectrometer (QE65000). The measurements were

conducted on the LED dies with a diameter of 1.0 mm while

indium was employed as the metal contacts.

The EL spectra for LEDs I and II are shown in Figs. 2(a)

and 2(b) at the current density levels of 10, 20, 30, 40, and

50 A/cm2, respectively (the EL spectra are collected from the

typical emission dies in LEDs I and II). Clearly, we can see

that the EL intensity as a function of the injection current

density for LED II is stronger than that of LED I. In the

FIG. 2. EL spectra for (a) LED I and (b) LED II at 10, 20, 30, 40, and

50 A/cm2.

FIG. 1. Schematic drawing for (a) the last GaN quantum barrier and the con-

ventional bulk AlGaN EBL for LED I, and (b) the last GaN quantum barrier

and the proposed AlGaN EBL for LED II, along with the respective sche-

matic energy diagrams. Ec, Ev, Efe, and Efh denote the conduction band, val-

ance band, quasi-Fermi level for electrons and quasi-Fermi level for holes,

respectively.
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meanwhile, we also illustrate the integrated optical output

power and the external quantum efficiency (EQE) in Fig. 3.

Being consistent with the EL profiles in Figs. 2(a) and 2(b),

LED II features an enhanced optical output power while

maintaining a reduced efficiency droop. For example, the

LED II optical power is enhanced by 16.9% at 100 A/cm2

when compared to LED I. Furthermore, the efficiency droop

at 100 A/cm2 for LED I and LED II is 49.3% and 42.3%,

respectively. Such an improved performance for LED II is

well attributed to the enhanced electron injection efficiency

by the suppressed electron leakage level as a result of the

proposed p-EBL design. Note that the error bars in Fig. 3

represent the performance variation across the whole epitax-

ial wafer for LEDs I and II. The performance variation is

obtained by calculating the power/EQE difference among

the three typical LED dies, each of which is collected at the

particular heating zone for the LED wafer mounted on the

MOCVD heater during the epitaxial growth.

Additionally, to further understand the physical origin

of the aforementioned improved LED performance enabled

by the proposed EBL in reducing the electron leakage level,

we also performed the numerical simulations using APSYS.

The simulation parameters (the energy band offset for any

heterojunction, Shockley-Read-Hall (SRH) recombination

coefficient, and Auger recombination coefficient) can be

found elsewhere.6,8–10 More importantly, when calculating

the electron capture and escape efficiency, we considered

both the ballistic and the quasi-ballistic transports in the

InGaN/GaN MQW region.8,9 Specifically, the spontaneous

and piezoelectric polarizations for the [0001] oriented

InGaN/GaN LEDs were included in the numerical simula-

tions, and the polarization effect is represented by setting the

polarization charges in the heterojunction regions. The mod-

els used to calculate the polarization induced charges were

developed by Fiorentini et al.18 Moreover, considering the

crystal relaxation during the epitaxial process, we assumed a

40% polarization level. The polarization interface charge

density (rpol
S ) between the GaN last barrier and the p-

Al0.20Ga0.80N EBL was set to 0.36� 1017 m�2 while the

polarization induced bulk charge density (qPol
B ) in the p-

AlxGa1�xN region was calculated by

qPol
B ðzÞ ¼ r � PðzÞ ¼ ð@P=@xÞ � ð@x=@zÞ,10 where PðzÞ

denotes the polarization density in terms of the grading posi-

tion (z). qPol
B ðzÞ of �3.74� 1024 m�3 was found. This on one

hand, partially compensates rpol
S and, on the other hand,

reduces the accumulated electron concentration at the inter-

face of the last quantum barrier and the p-Al0.20Ga0.80N

EBL. This thus suppresses the electron leakage level across

the p-type EBL.

The numerically simulated electron concentration distri-

butions at the current density of 30 A/cm2 for LEDs I and II

around the p-type EBLs and p-GaN regions have been illus-

trated in Fig. 4. It is demonstrated that the maximum electron

density at the interface of the last quantum barrier and the

p-type EBL is �9.97� 1018 cm�3 and �2.13� 1018 cm�3 for

LEDs I and II, respectively. The reduced electron density for

LED II is well attributed to the screening of rpol
S by qPol

B in

the p-AlxGa1�xN region with the AlN compositional grading.

As has been discussed, a reduced electron accumulation at

the interface of the last quantum barrier and the p-type

EBL is very helpful in increasing the conduction band

barrier height Ub and thus further alleviating the electron

loss, which is also manifested in the electron density in the

p-GaN layer for the two LEDs: in LED II the electron

density is �1.46� 1015 cm�3, much smaller than that of

�1.15� 1016 cm�3 in LED I. It is worth mentioning that the

spike of the electron density at the interface of p-AlxGa1�xN/

Al0.20Ga0.80N for LED II in Fig. 4 emerges as the two-

dimensional (2D) electrons are attracted and realigned by the

positive polarization induced charges, as shown in Fig. 1(b).

The aforementioned polarization self-screening effect in the

p-type AlxGa1�xN region significantly reduces the electron

accumulation at the interface of the last quantum barrier and

the p-type EBL, and this results in a the peak electron density

only as low as �3.39� 1016 cm�3 at the interface of

AlxGa1�xN/Al0.20Ga0.80N for LED II. Thus, this electron den-

sity spike has a little effect to the electron leakage.

Besides showing the electron profiles for LEDs I and II,

we also calculated the energy band diagrams at the current

density of 30 A/cm2 in Figs. 5(a) and 5(b). Here, we define

Ub1 as the conduction band barrier height between the last

quantum barrier and the p-EBL, Ub2 as the conduction band

barrier height of the rest of the p-EBL, Ub3 as the valance

FIG. 3. Experimentally measured optical power and EQE for LEDs I and II.

The error bars represent the performance variation across the whole epitaxial

wafer, which is obtained by calculating the power/EQE difference among

the three typical LED dies collected at different heating zones for the LED

wafer.

FIG. 4. Simulated electron profile around the EBL region for LEDs I and II

at 30 A/cm2.
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band barrier height between the last quantum barrier and the

p-EBL, Ub4 as the valance band barrier height of the rest of

the p-EBL and Dø as the energy band bending level of the

last quantum barrier. Note that the barrier height is defined

as the energy difference between the conduction/valance

band and the quasi-Fermi level for electrons/holes. Dø
reflects the energy band bending level of the last quantum

barrier, which is partly due to the polarization induced inter-

face charges between the last quantum barrier and the p-type

EBL.10 The interface charge density has to be reduced for

obtaining a small Dø. According to the above discussions,

the polarization interface charge density can be partially

screened by the polarization induced bulk charges, which

can be realized in LED II. For that reason, Dø has been

reduced to �0.20 eV for LED II from �0.28 eV for LED I,

which makes the last quantum barrier more effective in bet-

ter confining the electrons in the last quantum well. In addi-

tion, a small energy band bending level of the last quantum

barrier favors smaller electron accumulation at the interface

of the last quantum barrier and the p-EBL. Considering the

aforementioned relation Ub ¼ DEC � kT � lnðnLB=EBL=NCÞ,
the conduction band barrier height of Ub1 is increased to

�0.21 eV in LED II from 0.13 eV in LED I. Because of the

improved electron blocking effect taking place at the inter-

face of the last quantum barrier and the starting position of

the p-type EBL, the electron density stored in the rest of the

p-EBL can be reduced. This thus leads to an increased Ub2 in

LED II compared to LED I. Desirably, with this proposed

EBL architecture in LED II, the hole injection efficiency

seems not affected, which can be read from the values of

Ub3� 0.31 eV and Ub4� 0.19 eV in Figs. 5(a) and 5(b) for

both LEDs, respectively. Thus, the enhanced optical output

power and the reduced efficiency droop observed in LED II

are well attributed to the suppressed electron leakage level

through the proposed polarization-self screened p-type EBL

configuration.

In conclusion, we have demonstrated a concept of

reducing the electron leakage level from the multiple quan-

tum well region and improving the light-emitting diode per-

formance by the polarization self-screening effect, which has

been realized by employing the p-type AlGaN electron

blocking layer with AlN composition partially graded along

the [0001] growth orientation. We have achieved an

enhanced optical output power and reduced efficiency droop

experimentally. With the powerful numerical simulations,

we have found a reduced density of the accumulated elec-

trons at the interface of the last quantum barrier and the

p-type electron blocking layer stemming from the screening

effect on the polarization induced interface positive charges

at the interface of the last quantum barrier and the p-type

electron blocking layer. For that, the p-type electron block-

ing layer is very effective in preventing the electrons escap-

ing from the active region of the light-emitting diodes. These

results indicate that the concept of polarization self-

screening effect and the proposed electron blocking layer

hold great promise for improving the performance of the

high-efficiency light-emitting diodes.
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