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ABSTRACT 

ENVIRONMENTAL FRIENDLY InP/ZnS NANOCRYSTALS 

Yasemin Coşkun 

M.S. in Materials Science and Nanotechnology 

Supervisor: Assoc. Prof. Hilmi Volkan Demir 

May 2012 

 

 

Semiconductor nanocrystals are nanometer scale fluorescent crystallites with 

tunable optical properties, which can be controlled by the material composition and 

particle size. They can be prepared using various synthesis techniques and find 

applications in many different areas ranging from life sciences to electronics. In this 

thesis, indium phosphide based nanocrystals are studied for LED applications. The 

thesis research work focuses on the colloidal synthesis method and material 

characterization of these nanocrystals. Using one pot synthesis method, the indium 

phosphide/zinc sulfide (InP/ZnS) core/shell nanocrystal structures are synthesized. 

This synthesis technique allows for a reproducible and tunable preparation method. 

The material characterization techniques used in this thesis include UV-Vis 

spectroscopy, photoluminescence spectroscopy, transmission electron microscopy 

(TEM), X-ray diffraction, X-ray photoelectron spectroscopy (XPS), inductively coupled 

plasma-mass spectrometry (ICP-MS), and Zeta Sizer (or DLS). These properties make 

InP/ZnS nanocrystals comparable to their cadmium (Cd) containing counterparts 

with respect to their optical properties, and InP/ZnS nanocrystals offer the potential 

to replace them because of environmental concerns in LED applications. 

 

Keywords: nanocrystals, synthesis, InP, ZnS  
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ÖZET 

ÇEVRE DOSTU InP/ZnS NANOKRİSTALLER 

Yasemin Coşkun 

Malzeme Bilimi ve Nanoteknoloji Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. Hilmi Volkan Demir 

Mayıs 2012 

 

 

Yarı iletken nanokristaller nanometre boyutunda, optik özellikleri materyal 

kompozisyonu ve parçacık boyutu kontrol edilerek ayarlanabilen floresan 

kristalciklerdir. Yarı iletken nanokristaller çeşitli sentez teknikleri kullanılarak 

hazırlanabilirler ve biyolojik bilimlerden elektroniğe kadar bir çok farklı alanda 

uygulama bulurlar. Bu tez içerisinde LED uygulamaları için indiyum fosfat tabanlı 

nanokristaller çalışıldı. Bu tezin araştırma çalışmaları bu nanokristallerin koloidal 

sentez metodu ve materyal karakterizasyonlarına odaklanmıştır. Tek kap sentez 

metodu kullanılarak, indiyum fosfat/çinko sülfat (InP/ZnS) çekirdek/kabuk 

nanokristal yapıları sentezlenmiştir. Bu sentez tekniği tekrarlanabilir ve ayarlanabilir 

bir hazırlama metodu sağlamaktadır. Tezde çalışılan malzeme karakterizasyon 

teknikleri UV-Vis spektroskopi, fotoluminesans spektroskopisi, geçirimli elektron 

mikroskopisi (TEM), x-ışını kırınımı, x-ışını fotoelektron spektroskopisi (XPS), etkileşik 

çiftlenmiş plazma (ICP-MS) ve Zeta boyut ayırıcını (ya da DLS) içerir. Bu özellikler 

InP/ZnS nanokristalleri kadmiyum (Cd) içeren rakipleriyle optik özellikleri açısından 

karşılaştırılabilir hale getirmektedir ve çevresel sebeplerle InP/ZnS nanokristaller LED 

uygulamalarında Cd içeren nanokristaller yerine kullanılmaktadır. 

 

Anahtar kelimeler: nanokristal, sentez, InP, ZnS  

http://tureng.com/search/ge%c3%a7irimli%20elektron%20mikroskopisi
http://tureng.com/search/ge%c3%a7irimli%20elektron%20mikroskopisi
http://tureng.com/search/x-%c4%b1%c5%9f%c4%b1nlar%c4%b1n%20k%c4%b1r%c4%b1lmas%c4%b1
http://tureng.com/search/etkile%c5%9fik%20%c3%a7iftlenmi%c5%9f%20plazma
http://tureng.com/search/etkile%c5%9fik%20%c3%a7iftlenmi%c5%9f%20plazma
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CHAPTER 1 

 

INTRODUCTION 

 

This thesis focuses on environmental friendly InP/ZnS core/shell nanocrystals (NCs) 

including their synthesis method, characterization and application examples. Firstly, 

a brief introduction is given in Chapter 1. Then, in Chapter 2, synthesis procedures 

are explained in detail with some illustrations. Subsequently, in Chapter 3, 

characterization studies and application examples are provided for elemental study, 

size study, crystal structure study, core/shell study, and applications. 

 

1.1. Nanomaterials 

Nanoscience has started to attract the world’s attention because of its potential 

impact on industry. Therefore, the emphasis on nanoscience grows stronger with 

each passing day. The area of nanoscience in the field of semiconductors is in 

principal the combination of different disciplines including materials science, 

chemistry, physics, engineering and biology. For the synthesis of developed 

nanoparticles, scientists have been working on different methods with different 

materials and using different routes [9]. 

Nanoparticles are the major class of nanomaterials that are quasi zero-dimensional. 

These particles have diameters of one to few hundred nanometers, and their optical 
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and electronic properties strongly depend on their sizes. Properties of small 

nanoparticles are different from those of large ones (larger than 20-50 nm), which 

have similar properties in their bulk structures. Nanoparticles can either be 

amorphous or crystalline, and crystalline nanoparticles are called as nanocrystals 

[10]. 

Nanocrystals, or nano-meter scale semiconductor crystallites, have been studied 

over the past two decades in order to understand the behaviour of semiconductor 

when they become small with diameters around from 1 to 10 nm [8, 11]. These 

materials are composed of an inorganic core, which consists of few hundred or few 

thousands of atoms, sometimes a shell surrounding the core, and an organic 

surfactant layer, or ligands, which prevent them from agglomeration [3, 8]. Because 

of having small size, the quantum confinement effect, which manifests itself as 

increasing bandgap with quantization of the energy states to further generated 

discrete levels, becomes observable, and its theoretical model is mainly based on 

the particle in a box model in quantum mechanics [12]. 

Many of the organically pasivated cores have some surface trap states, which act as 

non-radiative recombination centers  for charge carriers, and this results in 

decreased quantum efficiency or quantum yield [3]. The best way to improve the 

case is surface passivation by means of a shell formation using a wider bandgap 

semiconductor. Core/shell nanocrystal systems exhibit better fluorescence with a 

better quantum yield and a better resistance against oxidization. Moreover, the 

choice of shell material can also help to tune the peak emission wavelength of the 

final NC structure.  

Nanocrystal work has started in the early 1980s [13, 14]. However, semiconductor 

NCs were not fully understood till 1993 after when a remarkable progress was made 

on the semiconductor NC synthesis. Bawendi and his co-workers developed a novel 

synthesis method with a low size dispersion of 2-12 nm for Cd containing NCs [15]. 
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Low size dispersion is an important parameter for NC work since the NC properties 

are strongly dependent on the size. Besides, the core/shell NCs have been started to 

be studied extensively because of their superior optical properties compared to 

their only core cases.  

However, growing shells on core NCs is not an easy task but very critical for high 

efficiency. Both core and shell materials are required to crystallize in the same 

structure and, as a result, to have a small lattice mismatch [8]. Small lattice 

mismatch means close lattice constants for the core and shell materials. For the case 

of InP and ZnS core/shell materials, these constants are 5.87 and 5.41 Å, 

respectively, and their lattice mismatch is around 7%, which is acceptable [16]. The 

crystal structure of these materials is zinc blende, shown in Figure 1.1.1. Since both 

have the same crystal structure, ZnS also has the same unit cell, with Zn instead of In 

and S instead of P. 

 

Figure 1.1.1. Unit cell of InP in zinc blende structure [1]. 

 

In history, the development of synthetic procedures for semiconductor NCs has 

started with Cd containing NCs as indicated earlier. Various NCs have been 

synthesized, including those in II-IV, III-V, and IV-VI depending on the group number 

of materials used for final NC structure. Some of these particles can be synthesized 
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in aqueous media [17, 18] but they can also be synthesized in different mediums like 

in ionic liquids [19], oil-water system [20], or in microemulsions [21].  

In this thesis, the main focus is on Cd-free III-V nanophosphor core/shell NCs 

including InP/ZnS. III-V NCs are studied less extensively when compared to II-VI 

compounds, although NCs containing group III-nitrides and phosphide compounds 

are most generally referred to as greener NCs than those containing the elements 

like Cd, Pb, Hg or Te [22]. However, their synthesis methods are fewer and not so 

stable, which requires more work in this area. However, there are more studies 

recently reported due to environmental concerns and low acceptability of cadmium 

containing NCs in technological applications and life sciences [3, 23, 24].  

Among Cd-free materials, mostly studied compounds in the literature are indium 

phosphide (InP) and indium aresenide (InAs) NCs, which have bulk band gap 

energies of 1.27 and 0.46 eV respectively. However, InAs also contains As which is 

Class B elements in terms of toxicity (whereas Class A contains Cd and Hg). 

Therefore, InP is the most promising candidate for environmental friendly NCs [25, 

26]. They can offer a similar or even broader emission range, similar to their Cd 

containing counterparts without having intrinsic toxic property, whereas they 

exhibit poor optical properties typically, their PL emission full-width-half-maximum 

(FWHM) lies around 50-100 nm, and their quantum yield is relatively low . Cd-free 

type of NCs are first reported by Nozik and his colleagues and they observed strong 

band-edge emission for InP NCs [27, 28]. Then, Heath et al. reported the size-

selective and surface passivated InP NC sytnhesis procedure in 1996. However, the 

quantum efficiency was still a problem, which was reported to be better for smaller 

NCs, having less than a 2% quantum yield [29]. Subsequently, some groups also 

worked on increasing efficincies of synthesized NCs, and Micic and Talapin obtained 

the efficiencies of 30-40% by photoassisted etching techniques. They obtained the 

highest efficiency level reported till then because they were able to remove the 

surface phosphorus atoms causing surface trap states [28, 30]. 
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In order to obtain better properties and higher efficiencies, researchers started to 

grow shell on InP core NCs, although sometimes they can also make efficient 

InP/ZnS alloy structures [31]. First, Xie et al. proposed a new route for the growth of 

ZnS shell on InP core in 2007 and managed to synthesize high quality NCs [26]. Then, 

Li and Reiss developed a single step synthesis method depending on the difference 

in reactivity of the InP and ZnS precursors and they obtained a quantum yield up to 

50-70% with high photostability [32]. They also used highly reactive precursors for 

the synthesized NCs to obtain higher quality, and they reached around 20% 

quantum yield for their prepared InP/ZnS core/shell NCs [22]. Moreover, Xu et al. 

proposed a fast synthesis method for InP/ZnS core/shell NCs covering the range of 

blue to near-infrared with a reported efficiency level of up to 60% [33].  

Doping is another technique used for the synthesis of doped InP/ZnS NCs. Xie and 

Peng developed an efficient Cu-doped NCs with an efficiency level around 35-40%  

[34]. The main problem with all aqueous synthetic methods of InP/ZnS NCs is their 

large size dispersion of at least 15%. Because of this reason, additional methods 

such as size selective precipitation after preparation of these NCs gain importance 

for obtaining monodisperse NCs. 

 

 

1.1.1. Classification of Nanocrystals 

Core/shell NCs can be classified according to their relative position of bandgap 

energy levels. Figure 1.1.1.1. represents the electronic energy levels of some mostly 

using semiconductors. 



 
 

6 
 

 

Figure 1.1.1.1. Electronic energy levels of some semiconductor materials in which CB 
and VB represents the conduction band and the valance band, respectively [2]. 

 

According to the choice of the materials for the core and the shell, the core/shell NC 

structure can be named as type-I, type-II, and reverse type-I, as shown in Figure 

1.1.1.2. 

 

 

Figure 1.1.1.2. Types of core/shell NCs depending on the energy-level alignment [3]. 

 

In Figure 1.1.1.2, the upper and lower edges correspond to the position of the 

conduction and valance band edges, respectively. Also, the center figures show the 

core and the side figures indicate shell material. As can be understood from the 

figure, if the bandgap of the shell material is larger than that of the core, it belongs 
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to type-I and both electrons and holes are confined in the core. In the 

complimentary case, if the bandgap of the core material is larger than that of the 

shell, electrons and holes are either partially or completely confined in the shell. 

Finally, in type-II core/shell NCs, either the conduction or valance band edge of the 

shell material is smaller than that of the core, while the other is larger. In that case, 

electrons and holes are separated in different regions of the core/shell structure [3]. 

 

1.1.2. Synthesis of Nanocrystals 

Semiconductor NCs can be synthesized by using wet chemistry [32, 35], molecular 

beam epitaxy (MBE) [36, 37], metal-organic chemical vapor deposition (MOCVD) 

[38], and organometallic vapor phase epitaxy (OMVPE) [39] methods. Using wet 

chemistry, colloidal NCs can be obtained. 

In wet chemistry, stability of the NCs is an important issue and it is related to the 

presence of ligand shell. The ligands are adsorbed on the surface of NCs and prevent 

them from aggregation in solution. Ligands can provide stability both in aqueous 

medium and in organic medium. In aqueous medium, Coulomb interactions 

between the ligand species enable the necessary repulsive forces against attractive 

van der Waals forces between grains. On the other hand, in organic medium, the 

increase in solute concentration provides repulsive forces [10]. 

To increase the stability, the shell growth is the key point, but this needs to be 

epitaxial growth, which is required for the NCs to have better optical properties. 

Shell material should be carefully chosen with a small lattice mismatch to avoid trap 

states on the surface leading to low quantum yield. Also, appropriate shell 

precursors should be used in the synthesis and the precursors should possess high 

reactivity and selectivity so there will be no side reactions [3]. Table 1.1.2.1 

represents some of the material parameters for mostly studied semiconductors. 
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Table 1.1.2.1. Material parameters of selected bulk semiconductors [8]. 

 

 

   

1.2. Material Characterization 

Determination of the NC structure is another important point in a NC study. Some 

basic characterization techniques are used for the core and core/shell NCs including 

UV-Vis and photoluminescence spectroscopy. Additionally, transmission electron 

microscopy (TEM), X-ray diffraction, X-ray photoelectron spectroscopy (XPS), 

inductively coupled plasma-mass spectrometry (ICP-MS), and Zeta Sizer (or DLS) can 

be used for their characterization. 
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1.2.1. UV-Vis-NIR Spectroscopy 

UV-Vis NIR spectroscopy is one of the essential techniques to determine optical 

properties of NC materials and used to detect the amount of light absorbed in them 

at different wavelengths. Ultraviolet (UV), visible, short-wave near-infrared, and 

long-wave near-infrared cover the ranges of 190-380 nm, 380-750 nm, 750-1100 

nm, 1100-2500 nm, respectively. UV-Vis-NIR offers some different measurement 

modes; namely, scan (absorbance vs wavelength), time drive (absorbance vs time at 

specific wavelength), individual wavelength(s) (individual absorbance(s) at selected 

wavelength(s), chemometrics, and quantitative methods (concentration of analyte 

vs. absorbance), and kinetics (kinetic rates of reaction) mode [40]. In nanocrystals 

characterization, the scan mode is used to make quantum yield measurements. 

In spectroscopic measurements, Beer-Lambert law is commonly used for 

quantitative analysis since the relation is useful for detecting concentration of the 

sample in a specimen. Beer-Lambert law is given by  

  
 

  
                 (1) 

where T is the transmittance, I is the intensity of transmitted light, I0 is the intensity 

of incident light,   is the molar extinction coefficient, c is the concentration, and   is 

the optical path length [40, 41]. 

This relation can be converted to absorbance as a logarithmic term to simplify it and 

the final form is 

                                               (
 

  
)      ( )  ∊            (2) 

A typical spectrophotometer consists of three main parts: a light source, 

monochromator, and a detector. Spectroscopic analyses are commonly carried out 

for samples in solution but a solid film form can also be studied. Solutions are 
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prepared typically in a simple 1 x 1 cm2 cell (glass or quartz) cuvettes and used for 

analysis. The absorption wavelength and the intensity are related to the type of 

material studied [42].  

 

1.2.2. Fluorescence Spectroscopy 

Fluorescence spectroscopy is a complementary technique of the absorption 

spectroscopy; this method also gives information about optical properties of 

materials. It mainly concentrates on the electronic and vibrational states of the 

material.  

As in the case of the absorption spectrophotometer, a fluorescence spectrometer 

consists of three main parts: a light source, a filter or a monochromator, and a 

detector. Light coming from the source passes through a monochromator (or a 

filter) and strikes on to the sample.  After shining the light, a portion of it is absorbed 

by the sample and the rest is emitted in all directions. This emitted light passes 

through again another monochromator and send to the detector, which is placed at 

90˚ to the incident beam to prevent the transmitted or reflected light from reaching 

the detector [43]. 

Configurations of the sample and the sample holder are important for better 

fluorescence measurement. In the absorption measurement, it suffices to use a 

simple 1 x 1 cm2 cell (glass or quartz) and 180˚ geometry. However, for the 

fluorescence spectroscopy, it is required to use 90˚ geometry to prevent large 

background light scattering [43]. Moreover, as in the case of absorption, it is 

possible to investigate both liquid and solid samples with this method. 
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1.2.3. Transmission Electron Microscopy (TEM) 

TEM is one of the highly sophisticated characterization tools, which can be used in 

many applications of different science disciplines. It operates similarly to a light 

microscope but TEM uses an electron beam instead of light. It enables the users to 

obtain both structural and chemical information about the sample over the range of 

length scales to the level of atomic dimensions. In TEM, the image of the sample is 

obtained by electrons passing through the sample [4, 44, 45]. Typical transmission 

electron microscope consists of five main components (Figure 1.2.3.1): an electron 

gun or an electron source which is the source of illumination, a specimen port to 

place the sample, electromagnetic lenses to focus the electron beam and to magnify 

the image, apertures which limit the angular spread of the beam and helps to 

control the contrast, and a fluorescence screen for optimum viewing. 

  

Figure 1.2.3.1. Schematic representation of basic components of TEM [4]. 

The quality of TEM samples is very important for the visibility. The most important 

point is to prepare a tiny and thin specimen in order to transmit electrons, and it 

should also fit into the TEM holder. In most of TEM instruments, a disk shaped grid 

with about 200 openings per inch is chosen. Different grids for different purposes 

(e.g., to study contamination, impurities etc.) can be chosen [44]. 



 
 

12 
 

1.2.4. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray 

Spectroscopy (EDAX) 

Unlike TEM, SEM uses secondary electrons reflected from the surface of a sample 

instead of transmitting the primary electrons to form an image of the topography, 

which means SEM image can be interpreted as an indirect image of the object. The 

most important problem with SEM is its resolution; the resolution of SEM is 

commonly limited to 200 Å  (20 nm) for most specimens and the NCs is hard to see 

perfectly in that case [44]. However, SEM gives valuable information about the 

composition of the material prepared by combining it with energy dispersive X-ray 

spectroscopy (EDAX). This is an analytical technique used for the chemical 

characterization of a sample. Additionally, preparation of specimen for SEM is not a 

complicated task. Nothing special is required to do if the prepared surface is 

conductive and the area of interest is the top surface. 

 

1.2.5. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) 

ICP-MS is a powerful tool for the purpose of elemental analysis. Detection limit of 

many of the chemicals stated in periodic table is below the ppt levels and ICP-MS 

instrument enables scientists to work in that range and also measures most of the 

elements. The instrument contains many different components including a sample 

introduction system (nebulizer and spray chamber), an ICP torch, which creates very 

hot zone like 6000˚C to make ions, a RF coil wrapping torch at one end, an interface 

to link the atmospheric pressure ion source to high vacuum mass spectrometer 

(MS), a vacuum system to provide correct operating conditions, a collision/reaction 

cell, ion optics, a MS, a detector, and a data handling and system controller [46]. 

It can be said that ICP-MS is mainly composed of three main parts: argon plasma, a 

mass spectrometer and a detector. A sample in its diluted solution form is given as 
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aerosol droplets into the argon plasma. It dries the aerosol and dissociates into 

molecules. Then, by removing electrons, singly-charged ions could be obtained, 

which are sent to quadrupole mass spectrometer, and ions can be scanned rapidly. 

By the help of quadrupole mass spectrometer, at any time, only one mass-to-charge 

ratio is allowed to pass through the MS. After exciting the MS, ions are detected by 

the detector [46]. For the analysis part, the instrument makes the calibration curve 

first, and then determines the concentration of elements on this basis.  

ICP-MS used in our experiments operates on the collision mode, which has a better 

interface removal compared with the standard mode but a little lower in quality 

than the reaction mode. 

 

1.2.6. X-Ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectroscopy, XPS, is a commonly used technique to study the 

surface properties, which contains information about elements present on a sample 

surface with their chemical states. XPS can analyze the film surface by taking 

information from photoelectrons originating from a depth of less than 10 nm. XPS 

consists of three main parts: a source of primary radiation which is MgKα (1253.6 

eV) or AlKα (1486.6 eV), a detector, which detects the electrons leaving the sample 

surface according to their kinetic energies, and an analyzer operating to accept only 

the electrons having energy within the range referred to as pass energy. All parts of 

should be in vacuum chamber operating at ultra-high vacuum (UHV) [5, 47]. AlKα is 

used for our experiments. 

The primary radiation or incident X-ray interacts with the surface atoms causing 

electrons emitted by the photoelectric effect. The emitted electrons then have 

kinetic energies given by 

                     (3) 
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where hν is the photon energy, BE is the binding energy of the atomic orbital from 

which the electron originates, and s  is the spectrometer work function. 

 

 

Figure 1.2.6.1. Schematic representation of (a) photoionization process and (b) 
Auger electrons [5].   

 

Photoionization is a process of photoemission in which an electron from K shell (1s 

electron) is taken apart from the atom by giving photon energy to the system as 

shown in Figure 1.2.6.1 (a). After this process, all electrons with a binding energy 

less than the photon energy will be available in spectrum. Other electrons that are 

excited and escape from the system without any energy loss will contribute to the 

characteristic peaks in the spectrum, and the electrons which result in inelastic 

scattering contribute to the background of the spectrum. Another possibility to the 

emission of X-ray photon is the ejection of Auger electrons which are the 

consequence of XPS process as indicated in Figure 1.2.6.1 (b). The difference 

between emitted photoionized electrons and Auger electrons is that Auger electrons 

are the secondary electrons and these electrons will not contain elemental 

information; they can be used for the imaging information in SEM [5]. For XPS 
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measurements, the sample should be in solid film form since it will be operated 

under high vacuum conditions as indicated earlier. 

  

1.2.7. Zeta Sizer: Dynamic Light Scattering (DLS) 

Dynamic light scattering (DLS) is sometimes called as photon correlation 

spectroscopy or quasi-elastic light scattering. DLS is a common technique used to 

measure the size of particles in solution form. This technique typically measures the 

Brownian motion to relate the size information [6]. Brownian motion is the random 

movement of particles with the interaction of surrounding solvent molecules. When 

particles are illuminated with laser source, smaller particles are affected most by the 

interaction and so move more rapidly after interacting with other molecules 

whereas larger ones are heavier and move more slowly with the same interaction. 

Moreover, since the DLS measurement heavily depends on viscosity and changes 

with temperature for solutions, temperature information should be known and it 

should be constant during measurement. Brownian motion is related to a property 

known as the translational diffusion coefficient.  

DLS gives information about hydrodynamic diameter, not the real diameter, and this 

diameter value changes with the solvent chosen. Actually, the hydrodynamic 

diameter is the measure of how particle diffuses within a specific fluid [48]. Also, like 

for any kind of in-solution diameter measurement methods, DLS assumes the 

particles as perfect spheres. The hydrodynamic diameter is calculated by using the 

Stokes-Einstein equation as follows 

 ( )   
  

    
          (4) 
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where d(H) is the hydrodynamic diameter, D is the translational diffusion coefficient, 

k is the Boltzmann’s constant, T is the absolute temperature, and   is the viscosity 

[6]. 

DLS consists of four main components including a laser source, an attenuator, a 

sample cell and a detector, as shown in Figure 1.2.7.1. The laser source provides a 

light beam at 633 nm to illuminate the sample in the cell. If the intensity of scattered 

light is so high, in order to prevent the detector than becoming saturated, an 

attenuator can be used to reduce the intensity of the laser source. Then the 

resulting scattered light is measured by detectors and the obtained signals are sent 

to a correlator which compares the intensity at successive time intervals to obtain 

intensity rate. Finally, the software analyzes the information and derives size 

information accordingly [6] 

 

Figure 1.2.7.1. Components of Zetasizer Nano series for DLS measurements [6] 
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1.2.8. X-Ray Diffraction (XRD) 

XRD is a commonly used experimental method for the detection of crystal structure 

of solids. Besides, it can be used in order to determine the lattice constants, 

geometry, unknown materials, defects, and so on [49]. X-rays are electromagnetic 

radiation at wavelengths of 0.01 nm to 10 nm [50]. Monochromatic X-ray beams are 

used in diffraction and, when a beam hits the sample prepared, scattered X-rays are 

generated with the same wavelength of incident beam. This kind of scattering is also 

callled as elastic scattering. A Simple way to describe the diffraction is to use the 

Bragg condition.  

                   (5) 

where n is integer which is 1 in most cases because of taking into consideration only 

the first order diffraction, λ is the wavelength, d is the interplanar  distance, and θ is 

the Bragg angle at where the diffraction peak becomes observable. 

XRD mainly consists of four different parts: a X-ray source, X-ray optics to 

manipulate the primary X-ray beam at the required wavelength, a sample stage to 

place the sample, and a detector to record the scattering X-rays from the sample 

[50]. 

XRD samples are mostly in solid form, e.g., powder. One difficulty about the sample 

preparation is requirement of a large amount of powder like few milligrams. For 

nanocrystals, it is somehow difficult, but achievable. One alternative way is to use 

capillary spinner for XRD. In that case, it is easier to prepare sample since a little 

amount of sample dissolved in solvent is enough. However, capillary spinner has its 

own drawback and also makes it harder to obtain meaningful data. 
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1.3. Motivation of This Study 

Light emitting diodes (LEDs) can help to save the energy consumption of artificial 

lighting by fifty percent [51]. To achieve high efficiency lighting is essential, and to 

reach a quality, the main requirement for a white light is the right selection of color 

components. These color components should satisfy the criteria represented in the 

previous work by Erdem et al. [52].The full-width-half-maximum (FWHM) values of 

these color components are expected to be in the range of 43 to 44 nm for blue, 

green, and yellow components, while 32 nm for the red one. The blue color 

component requires 465 nm emission peak with a relatively high acceptable 

standard deviation like 9.1 nm, the green color component needs 528 nm emission 

peak with again a relatively high acceptable standard deviation of 9.1 nm, and the 

yellow component entails its emission peak around 569 nm with a standard 

deviation of 9.7 nm, whereas the red color component, which is the most critical 

one, demands 620 nm emission peak with a comparably low standard deviation of 

2.5 nm. The importance of standard devation is that a high standard deviation 

means flexibility in the choice of color component material whereas a low standard 

deviation like in the case of the red component implies a strict choice, which makes 

it the critical one among all others. In the light of this information, one of the 

possibilities for high quality LEDs with environmental friendly nanophosphor 

materials is InP since it is also possible to cover the spectral range and red-emitting 

quantum dots are obtainable with necessary modifications using InP. However, InP 

core material alone is not resistant to oxidization and also yields low quantum 

efficiency, and forming shell on it can reduce the oxidization possibility and improve 

the efficiency. In this thesis, our purpose is to synthesize red-emitting InP/ZnS 

nanophosphor NC material. For that, our focus is on the synthesis of the promising 

InP/ZnS nanophospors and investigating the possibility of using InP/ZnS NCs in LED 

application areas. 
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CHAPTER 2 

 

NANOCRYSTAL SYNTHESES 

 

As also indicated in Chapter 1, InP based nanocrystals (NCs) are among the most 

promising candidates for environmental friendly NCs. Because of their tunable 

emission comparable to Cd containing NCs, they are attractive alternatives to these 

Cd containing ones. Reasonably high quality InP NCs can be obtained even the 

synthesis procedures are challenging for these material systems. Important 

problems with InP NCs synthesis include poor emission, poor size control, and fast 

oxidization. However, these difficulties can be overcome by ZnS shell formation, 

which suffers small lattice mismatch with InP (7%).  

In this part of the thesis, synthesis procedures that are used in this work will be 

explained and final purification processes will be described. 

 

2.1. Synthesis of Nanocrystals 

InP/ZnS core/shell nanocrystals synthesis is based on one pot synthesis method. In 

this thesis, two different types of synthesis procedures are applied. All synthesis 

procedures are modified from different works carried out by Ziegler and Ni [32, 35]. 
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2.1.1. Materials Used 

For the preparation and post-preparation processes, the chemicals used include 

indium chloride (98%), indium(III) acetate (99.99% trace metal basis), 

tris(trimetyhylsilyl)phosphine (95%), hexadecylamine (technical grade, 90%), 1-

octadecene (90%), zinc undecylenate (98%), myristic acid (99%), zinc stearate (10-

12% zinc basis), and 1-dodecanethiol (98%), which were purchased from Sigma 

Aldrich Chemistry. Also, ethanol (absolute for analysis), hexane (emsure for analysis, 

99%), isopropanol (for analysis, 99.8%) were acquired from Merck, cyclohexyl 

isothiocyanate (97%) was obtained from Maybridge, and stearic acid was purchased 

from J.T. Baker.  

Among these chemicals, tris(trimetyhylsilyl)phosphine, cyclohexyl isothiocyanate 

and indium acetate were required to be treated in glove box, which supplies air-free 

environment, since these chemicals are sensitive to oxygen. Moreover, 1-

octadecene was degassed before use to make air-free synthesis under vacuum. 

 

2.1.2. First Synthesis Method 

InP/ZnS nanocrystals can be synthesized within one flask with subsequent injections 

of first core and then shell precursors. In order to synthesize InP core NCs in the first 

synthesis method, it is required to start with 0.1 mmol of indium myristate, which is 

prepared by using 0.1 mmol of indium acetate (In(AC)3), 0.43 mmol of myristic acid 

(MA), and 8 ml of 1-octadecene (ODE) in a flask. First, MA is put into flask and then it 

is taken into the glove box. Since In(AC)3 is very sensitive material to oxygen, it is 

necessary to use glove box, which supplies air-free environment by filling it with 

argon gas (Figure 2.1.2.1) to avoid oxidization. Also, degassed ODE is added to this 

mixture. 
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Figure 2.1.2.1. Photograph of glove box system. 

 

After preparing indium myristate in the glove box, the mixture is taken out and 

connected to the experimental setup, which is shown in Figure 2.1.2.2 and heated 

up to 100˚C under vacuum to dissolve all the materials in non-coordinating solvent 

ODE, and the solution becomes colorless at that point. Then, the mixture is cooled 

to room temperature and 0.1 mmol of zinc stearate with 0.1 mmol of dodecanethiol 

(DDT), which releases sulphur for the formation of ZnS shell at around 230˚C, is 

added under argon flow. After one last vacuum condition, followed by the addition 

of 0.5 ml of injection solution (prepared as 0.2 M tris(trimethylsilyl)phosphine 

(P(TMS)3) in ODE in the glove box), the temperature is increased quickly to 300˚C. At 

temperatures around 60˚C, color change of the solution (with green emission under 

UV) is observed, which is the indication of InP core formation. Finally, at a desired 

high temperature, the mixture is kept for 10 to 20 minutes for shell formation. The 

color change during the heating process is shown in Figure 2.1.2.3.  
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Figure 2.1.2.2. Our synthesis setup. 

 

 
Figure 2.1.2.3. Color change of the reaction solution during heating process: (a) at 
low temperatures (<40˚C), (b) at around 60˚C, and (c) at 300˚C. 

The problem with this synthesis is limited tunability of particle size. In the article by 

Li et al., it was reported that prepared InP/ZnS NCs cover the spectral range from 
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537 to 640 nm [32]. In our case, since the aim is to reach red emitting NCs, no effort 

is made to decrease the emission wavelength. All efforts focused on red shift. It is 

found that it is impossible to go further than the reported value of around 510 nm in 

our experiments, while maintaining high enough quantum efficiencies. The quantum 

efficiencies are found to be 30-40%. Figure 2.1.2.4 shows photoluminescence (PL) 

peaks at 506, 504, and 500 nm for Sample 1, 2, and 3, respectively. 

 
Figure 2.1.2.4. Absorption and photoluminescence spectra for three samples of 
InP/ZnS NCs. 

 

2.1.3. Second Synthesis Method 

This synthesis procedure is used widely in this thesis because of the easy tunability 

of emission spectrum. Optimizing the core synthesis is of great importance in this 

synthesis; therefore, the core synthesis results will be given before going into details 

for shell formation process. 
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2.1.3.1. Core Synthesis  

This method again uses one pot synthesis approach. For the growth of InP core NCs, 

it starts with mixing 0.1 mmol of indium chloride (In(Cl)3), 0.1 mmol of stearic acid, 

0.08 mmol of zinc undecylenate, 0.2 mmol of hexadecylamine, and 3 ml of ODE. In 

the synthesis, stearic acid, zinc undecylenate, hexadecylamine, and ODE are used as 

the ligands. Under air-free or vacuum conditions, the mixture is heated up to 

temperatures ranging from 180 to 240˚C depending on the core temperature choice. 

With the quick addition of 0.5 ml P(TMS)3 (0.2 M in ODE prepared in glove box), InP 

core nanocrystal growth starts and continues for 20 minutes. Finally, the mixture 

having core NCs is cooled down to room temperature. 

Undoubtly, the most important parameter that affects the NC quality and properties 

in this sytnhesis is temperature. In order to observe the changes in NC properties 

including full-width-half-maximum (FWHM) and peak emission wavelength, InP core 

experiments are carried out by varying the synthesis temperatures and the following 

results are obtained as listed in Table 2.1.3.1.1. 

Table 2.1.3.1.1. Temperature variation study for InP core NCs. 

Optical Property 
Temperature 

180 ˚C 200 ˚C 220 ˚C 240 ˚C 

Peak Emission Wavelength (nm) 550 560 585 607 

FWHM (nm) 95 85 90 100 

 

As can be understood, by increasing the temperature, it is easier to make larger 

particles because it is believed that smaller particles formed in early stages of the 

growth will dissolve in hot reaction mixture and free InP crystallites will combine 

with bigger colloidal NCs, which leads to larger size particles and thus red shifted 

spectrum. This growth phenomena also known as Ostwald ripening takes place in 

most of the colloidal synthesis procedures [53]. On the other hand, interpreting the 
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changes in FWHM is more complicated. One can expect that increasing growth 

temperature should decrease the FWHM since the smaller particles will combine 

with the larger ones. However, all of the small particles do not necessarily add up to 

larger ones equally. So it is expected that there will still be size variation for the 

resulting NCs because of the challenging nature of InP/ZnS NC syntheses. By 

considering these results, from Table 2.1.3.1.1, it can be inferred that the optimum 

temperature range is around 200-220˚C. 

 

2.1.3.2. Shell Synthesis 

After preparing InP core NCs, into the mixture having core NCs is added 0.3 mmol of 

zinc source (zinc undecylenate) necessary for shell growth. This new mixture is again 

heated up to over 200˚C under air-free environment. At a fixed high temperature 

between 260 and 280˚C, 1 ml of sulphur source (0.15 M cyclohexyl isothiocyanate in 

ODE prepared in glove box) is injected at a constant pump rate in 5 min by using 

syringe pump, which is shown in Figure 2.1.3.2.1. 
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Figure 2.1.3.2.1. Syringe pump used in the ZnS shell synthesis for the injection of S 
source. 

 

For the shell growth, the reaction mixture is kept for 20 min at the injection 

temperature, and the mixture is then cooled down to room temperature. At this 

point it is better to discard unnecessary reaction by-products, which can be 

eliminated by centrifuging at 4000 rpm for 15 to 20 min without adding any solvent. 

These by-products may include unreacted In and Zn particles and other chemicals 

produced in the hot reaction mixture. After discarding unnecassary precipitates, the 

resulting supernatant is taken and a purification process is applied. 
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2.2. Purification of Nanocrystals 

All of the prepared InP core and InP/ZnS core/shell NCs are diluted with non-polar 

solvents such as hexane. The resulting mixture of NCs and hexane is further mixed 

with high purity isopropanol in 1:1 volume ratio and ethanol is added dropwise till 

the solution becomes turbid. Then, it is centrifuged at 4000 rpm for 20 min. The 

supernatant now contains smaller sized NCs and the precipitate contains the largest 

sized NC particles. For further size selective precipitation, the supernatant can be 

used again, by using the same purification process and this time differently sized 

NCs are obtained in the precipitates. Each time the precipitate is diluted with few 

milliliters of hexane and taken for further characterization and use.  

Figure 2.2.1 shows the purified InP/ZnS NCs with and without UV light. The NCs 

shown in Figure 2.2.1 exhibit peak emission wavelengths of 625 nm (red), 590 nm 

(orange), 555 nm (yellowish green), and 420 nm (blue) from left to right and they 

are all obtained from the same synthesis batch with further purification steps. Their 

photoluminescence spectra are given in Figure 2.2.2. Their quantum efficiencies are 

found to lie around 20-30% for red- and orange-emitting particles. Smaller particles 

that emit around 540-415 nm yield lower efficiency. For efficiency measurements, 

rhodamine 6G (Rh6G) dye, which has an efficiency of 95% in ethanol, is used as the 

standard. 
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Figure 2.2.1. Purified InP/ZnS core/shell NCs: (a) without UV excitation and (b) under 
UV light.  

 

 
Figure 2.2.2. Photoluminescence spectra of purified InP/ZnS NCs emitting at (a) 625 
nm as red, (b) 590 nm as orange, (c)555 nm as yellowish green, and (d) 420 nm as 
blue. 
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C 

 

CHAPTER 3 

 

 

NANOCRYSTAL MATERIAL CHARACTERIZATION AND 

APPLICATIONS 

 

 

Setting right synthesis parameters is important for obtaining better quality NCs. 

Material characterization is another important step to determine and satisfy the 

necessary requirements. Especially for nano-scale materials, this task becomes much 

more crucial to specify the properties of prepared NCs. Characterization of NCs 

includes the determination of elemental components, particle size, crystal structure, 

and the evidence of shell formation for core/shell structures. For these purposes, 

different characterization tools were employed. These include Varian - Model: Cary 

100 (UV-Vis-NIR Spectroscopy), Varian - Model: Eclipse (Cary Eclipse Fluorescence 

Spectroscopy), FEI - Model: Tecnai G2 F30 (TEM: Transmission Electron Microscopy), 

FEI - Model: Quanta 200 FEG (SEM with EDAX), Thermo Scientific-Model: X Series II 

Inductively coupled plasma-mass spectrometry (ICP-MS), K-Alpha - Monochromated 

high-performance XPS spectroscopy, Malvern - Model: Nano ZS (Zeta Potential/Zeta 

Sizer, DLS), and Pananalytical Model: X'pert Pro MPD (X-Ray Diffraction). 

 

http://www.varianinc.com/cgi-bin/nav?/
http://www.science.unitn.it/~semicon/members/pavesi/Technical%20Spec_87-1942.pdf
http://www.science.unitn.it/~semicon/members/pavesi/Technical%20Spec_87-1942.pdf
http://www.varianinc.com/cgi-bin/nav?products/spectr/fluoro/Eclipse/eclipse&cid=KMJKQPHKFK
http://www.varianinc.com/image/vimage/docs/products/spectr/fluoro/brochure/1757.pdf
http://www.fei.com/products/types/dualbeam-systems.aspx
http://unam.bilkent.edu.tr/files/tem/2006_06_TecnaiG2_Family_pb.pdf
http://www.fei.com/
http://www.thermoscientific.com/
http://www.thermoscientific.com/ecomm/servlet/productsdetail?productId=12799366&groupType=PRODUCT&searchType=0&storeId=11152&from=search
http://www.malvern.com/
http://www.malvern.com/common/downloads/MRK496.pdf
htpp://www.panalytical.com/
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3.1. Elemental Study 

Throughout this thesis study, it is aimed to obtain InP core and InP/ZnS core/shell 

NCs. Firstly, it is important to know the elemental constituents of the synthesized 

materials. EDAX is one of the best ways for such an elemental analysis.  

As seen from Figure 3.1.1 and Figure 3.1.2, it is proved that the synthesized NCs are 

composed of InP core and InP/ZnS core/shell, respectively. The resolution of the 

images is not so good because of the limited resolution of SEM which is 20 nm. 

However, when we look at the EDAX elemental analysis results, it is seen that for the 

core sample, indium and phosphorus peaks are detected, and similarly for the 

core/shell samples, besides of indium and phosphorus, zinc and sulphur peaks are 

found, which is an indication that the expected particles are formed since the right 

elements exhibited the most intense peaks. 

 

  

Figure 3.1.1. EDAX results given for the selected areas (a) for the outside area of InP 
core NCs and (b) for the sample detected by SEM. 
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Figure 3.1.2. EDAX results given for the selected areas (a) for the outside area of 
InP/ZnS core/shell NCs and (b) for the sample detected by SEM. 

 

Blue-emitting InP/ZnS NCs are also investigated under SEM with EDAX. Because of 

the availability of In and Zn peaks for highly purified core/shell NCs shown in Figure 

3.1.3, blue-emitting NCs are considered to become InP/ZnS core/shell structure. 



 
 

32 
 

Figure 3.1.3. EDAX result of bue-emitting InP/ZnS NCs. 
 

In addition to EDAX, ICP-MS can help us to understand that we synthesize InP/ZnS 

NCs and that, with further making shell process, Zn to In ratio increases. By using the 

ICP-MS results given in Figure 3.1.4, the ratio Zn:In is calculated as 0.08, 0.22, and 

0.82 for the InP core, the InP/ZnS core/shell and the InP/ZnS core/thicker shell 

samples, respectively. This supports the growth of ZnS shell. 

 

Figure 3.1.4. ICP-MS results for InP core, InP/ZnS core/shell, and InP/ZnS 

core/thicker shell: Selected row represents the amounts for In and Zn in ppb. 
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3.2. Size Study 

The properties of semiconductor NCs strongly depend on size. With decreasing the 

particle size, NC emission and absorption shift to higher photon energies. Although 

the size information is very useful for understanding material properties, many 

reports lack detailed size information. Here the size information for the synthesized 

InP core and InP/ZnS core/shell NCs will be given. 

 
Figure 3.2.1. Magnified TEM images of (a) InP core NC (with a diameter of 2 nm), (b) 
InP/ZnS core/shell NC (3.4 nm), and (c) InP/ZnS core/thicker shell NC (4.2 nm). 

 

The size of the InP/ZnS NCs at different stages of the nanocrystal synthesis can be 

determined using different methods. As shown in Figure 3.2.1, it can be verified that 

the size of the NCs are increasing and their sizes are around 2.0, 3.4, and 4.2 nm for 

the core, core/shell and core/thicker shell, respectively, which verifies that the shell 

thicknesses are around 0.7 nm for the 1st shell and 0.4 nm for the 2nd one. 

Moreover, other supporting information may help to verify these results. These 

include theoretical calculations with necessary additional information taken from 

the experimental data of XPS. 

XPS is a very important tool to provide evidence for the core/shell structure and 

against alloying of the core/shell NCs. It is known that the intensity of photoelectron 

signal originating from a given atom is given by 
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       ( 
 

 
)          (6) 

where   is the intensity,    is the normalization constant, z is the distance of the 

emitting atom from the surface, and λ is the mean free path of the emitted electron.  

When a mean free path of the emitted photoelectron is comparable to the shell 

thickness, XPS on thin films of the core/shell NCs can provide information about the 

thickness and uniformity of shell growth by comparing signal intensities from the 

core and shell atoms. To calculate the thickness of the shell using XPS results, the 

method suggested by Nanda and Sarma is used. 

 

 
Figure 3.2.2. Sketch of a core/shell NC structure. 
 

In Figure 3.2.2 Rc represents the core radius and Rs is the radius of the core/shell NC. 

An electron being photoionized below the surface of nanoclusters has a finite 

probability of escaping through the surface without suffering any inelastic 

processes. This probability is conveniently expressed in terms of the mean free path 

λ of the photoionized electron and proportional to exp(-z/λ) [54]. Thus the 

infinitesimal intensity contribution    from a volume element    is given as follows 

         ( 
 

 
)            (7) 

where    is the normalization constant and depends on the particular electronic 

level involved and the specific sample via the photoionization cross-section. As a 
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result, the total intensity from each region of nanocrystals can be obtained by 

integrating (7) for the infinitesimal intensity contribution over suitable limits. 

In order to find the size of the NCs with this method, it is reasonable to assume that 

the normalization constant    has different values for the core (  
   ) and the shell 

(  
   ) materials and their ratio is found as 

  
   

  
    

    

    
 
    

    
          (8) 

where      and      are the densities and      and      are the molecular 

weights of the core and shell, respectively. 

For the size calculation, the mean free path value of the photoionized electrons ( ) 

also needs to be known, which is given by 

                     (9) 

where KE is the kinetic energy in eV. KE can be calculated using (3) in Section 1.2.6.   

found by this relation will be in Å. 

Knowing all these parameters, the size information can be obtained after solving the 

following expression [55] 
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where 
      

     
 value is the intensity ratio which can be found from XPS results, 

  
   

  
    is 

the normalization constant ratio which can be calculated using (8).  

     and      are the mean free paths of the photoionized electrons for ZnS and 

InP, respectively, and r is the integration over the suitable limits. Also, it is obvious 
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that the integration of   is trivial because of the symmetry, giving a factor of 2 . The 

limits of the integration for core (Rc) is taken as 1 nm, as found by TEM. Then, the 

only unknown in (10) is Rs.  

The above integral cannot be evaluated analytically. Therefore, it is solved 

numerically by using Wolfram Mathematica 6.0. As a thicker shell is obtained after 

subsequent synthesis, different Rs value is obtained. 

In our case for InP core NCs to InP/ZnS core/thicker shell NCs, the calculations are 

carried out accordingly. 

First  
  
   

  
    ,the normalization constant ratio, is needed. Since the densities of InP and 

ZnS are 4.810 and 4.090 g/cm3, and the molecular weights of InP and ZnS are 

145.792 and 97.474 g/mol, respectively, the result is 

  
   

  
    

    

    
 
    

    
 
     

      
 
       

     
              (11) 

The core radius, Rc, is taken to be 1 nm as found by TEM and represented previously 

in Figure 3.2.1(a). The intensity ratio of 
      

     
 is listed in Table 3.2.1. 

 

Table 3.2.1.  Indium to zinc intensity ratio of InP/ZnS core/shell NCs and InP/ZnS 
core/thicker shell NCs as found from XPS. 

 In/Zn intensity ratio 

InP/ZnS core/shell NC 1.9 

InP/ZnS core/thicker shell NC 9.4 

And finally, the mean free path value of the photoionized electrons ( ) is calculated 

by using (3) and (9). The results for      and      are found as 

          (    )
 
      (        )

 
         (12) 
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The energy of the photon (  ) is constant, which is 1486.6 eV. Binding energy values 

are different for In and Zn. They are 444 eV for In and 1023 eV for Zn, which can be 

found from XPS results and the work function (  ) is negligible compared to BE and 

  , and thus  it is omitted. Then the results are 

                    (13) 

                    (14) 

Subsequently, the integral which is used to find shell radius (Rs) is evaluated 

numerically by using Mathematica 6.0 and the following results are obtained as 

shown in Table 3.2.2. 

Table 3.2.2. Radii found by TEM and XPS results. 

 

Radius (R=D/2) (nm)* 

Experimentally 

expected 
TEM XPS 

InP core NC 1.0 1.0     1.0** 

InP/ZnS core/shell NC 1.5 1.7 1.4 

InP/ZnS core/thicker shell NC 2.5 2.1 2.6 

*R is the radius and D is the diameter. 
**InP core radius is fixed for XPS calculations. 
 
 

Table 3.2.2. results are very close to the expected experimental results, which is the 

indication of nice coverage of ZnS shell around InP core NCs. The 2nd shell coverage 

is low but it is known that the resolution of XPS is higher than the resolution of TEM. 

Moreover, the diameters of NCs prepared are small and their crystallinity is not 

perfect. Therefore, it is hard to detect the correct frames for NC outer shell. The 

radius difference may come from these effects.  

Apart from the real radius, hydrodynamic radius can also be found with the help of 

DLS by using software provided by Malvern. It should be noted that the found 
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average diameters are for the case of diluted NCs with hexane because the resulting 

diameter is dependent on the solvent chosen. For the hexane case, hydrodynamic 

diameters are found as 8 nm (with a standard deviation of 5 nm) and 10 nm (with a 

standard deviation of 4 nm) for the InP/ZnS NCs after the 1st and 4th purifications, 

respectively, as shown in Figure 3.2.3. The reason of purification is to prevent 

additional interference of ligands and/or irrelevant particles, which may possibly 

adversely change the result. For the used NCs, the TEM result was 2 to 3 nm for the 

core/shell NCs. 

 
Figure 3.2.3. DLS size distribution for InP/ZnS NC samples (a) after the 1st purification 
and (b) after the 4th purification, along with their TEM images. 
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3.3. Crystal Structure Study 

Most of the semiconductor NCs are in the crystal structure of cubic zinc blende or 

hexagonal wurtzite [8]. The powder X-ray diffraction pattern for InP and InP/ZnS NCs 

show the behaviour of zinc-blende structure as shown in Figure 3.3.1, and they have 

strong peaks which correspond to the (111), (220), and (311) planes. 

 
Figure 3.3.1. XRD spectroscopy of InP core and InP/ZnS core/shell NCs with their 
calculated lattice parameters. 
 
 
The lattice parameters shown in Figure 3.3.1 are calculated on the basis of Bragg 

condition. By using Bragg condition as indicated in (5) in Section 1.2.8, the 

interplanar distance, d, is found and then it is converted to the lattice parameter, a, 

for the zinc blende structure as 

 

  
 
        

  
        (15) 

where h, k, and l are the Miller indices. 
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In order to define the crystal structure, similar calculations can also be carried out by 

using TEM results. Figure 3.3.2 and Figure 3.3.3 can be used to calculate the lattice 

constants for all core and core/shell NC structures. First, it is required to determine 

the average diameter of NCs and it is given with a sample magnified TEM image in 

the given figures. From the selected area electron diffraction (SAED) patterns, the 

interplanar distance, d for the core and core/shell NCs are found as 

  
 

     
        (16) 

where RSAED (in Å) is the radius of the  selected area diffraction patterns as shown in 

Figures 3.3.2(b) and 3.3.3(b). 

       (a)           (b) 

 

 

Figure 3.3.2. (a) TEM image (2 nm) and (b) selected area electron diffraction pattern 
of InP core NCs. 

 

 



 
 

41 
 

       (a)           (b) 

 

 

Figure 3.3.3. (a) TEM image (3 nm) and (b) selected area electron diffraction pattern 
of InP/ZnS core/shell NCs. 

 

After finding d, by using (15), the lattice constant, a, can be found. The results found 

by using both XRD and TEM are given in Table 3.3.1. 

Table 3.3.1. Calculated lattice parameters by using TEM diffraction pattern and XRD 
results. 

 
XRD TEM 

d (Å) a (Å) d (Å) a (Å) 

InP core NCs 3.34 5.775 3.28 5.687 

InP/ZnS core/shell NCs 3.29 5.693 3.20 5.545 

 

The bulk lattice constants for InP and ZnS are reported as 5.869 Å and 5.416 Å, 

respectively, in the literature [8]. NC lattice constants are expected to be between 

these values and as seen from Table 3.3.1, the results of XRD and TEM satisfy the 

expectation. From these results, it can be said that XRD gives more reliable results 

since it relies on an ensemble measurement whereas TEM uses only a small portion 
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of the sample for analysis. The problem with measuring only the small portion is that 

the defects of NCs affect the results more, making the measurement more 

dependent on the sample region chosen. 

 

 

3.4. Core/Shell Study 

InP core NCs typically have quantum yields around 10% and are not very stable in air 

conditions. Oxidization is a problem for such NCs; e.g., phosphorus (P) oxidization 

occurs and the oxidized NCs suffer the efficiency. However, the encapsulation of 

these core NCs with a wider band gap semiconductor material such as ZnS improves 

the efficiency and increases it up to 30-40%, and reduces or even eliminates the 

oxidization problem. 

Proving successful shell formation is hard most of the time. Spectroscopic analyses 

like UV-Vis NIR spectroscopy and fluorescence spectroscopy give an insight with red 

shifted results for the shell growth but not a complete proof. After formation of the 

shell, a small red shift in the excitonic peak in UV-Vis NIR absorption spectrum and 

photoluminescence peak wavelength (shown with a red arrow) becomes observable 

in Figure 3.4.1. The shift in absorption is not readily detectable because of the large 

size distribution of InP/ZnS NCs. The reason of this phenomenon can be explained as 

a partial leakage of the exciton into the shell material [3]. However, these methods 

are not sufficient; they should be supported with additional structural studies. TEM 

and XPS are the promising tools enabling the detection of shell growth. 
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Figure 3.4.1. Absorption and PL spectra of the InP core and InP/ZnS core/shell NCs. 

 

For our as-synthesized InP core and InP/ZnS core/shell, and InP/ZnS core/thicker 

shell NCs, the obtained results are presented in Figure 3.4.2 and Figure 3.4.3. In 

Figure 3.4.4, In 3d5/2 and In 3d3/2 peak counts, which have binding energies of    444 

and    452 eV, respectively, decrease and  Zn 2p3/2 peak counts (with binding energy 

of    1022 eV) increases with the increasing shell thickness because the incoming 

signal changes for all compounds when a thicker shell is formed. For In 3d cases, a 

zoomed figure which is depicted in Figure 3.4.3, is easier to observe the change. 
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Figure 3.4.2.  XPS survey data for InP core, InP/ZnS core/shell and InP/ZnS thicker 
shell NCs. 

 

 
Figure 3.4.3.  XPS survey showing indium peaks for InP core, InP/ZnS core/shell and 
InP/ZnS thicker shell NCs. 
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Figure 3.4.4. XPS results of In, P, Zn, S peaks for NC of InP core (Core), InP/ZnS 
core/shell (CS1) and InP/ZnS core/thicker shell (CS2) samples.  

 

So far, XPS results are compared with respect to the count numbers for the binding 

energies of In and Zn elements because the corresponding films are prepared with 

similar amount of NCs and for the same spin values. However, since the peak count 

also depends on the concentration of NCs on the film surface, Zn to In ratio will 

result in a better confirmation for the shell formation compared to the intensity 

evaluation. For the results taken from the data of additional shell formation 

experiments seen in Figure 3.4.4, the corresponding chart is obtained in Figure 3.4.5. 

Here the shell formation is obvious due to the increasing Zn:In ratio (faster than a 

straight line, which would be interpreted as an alloy). In our case, this implies that 

we have core/shell NCs. 
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Figure 3.4.5.  Zn to In peak count ratio taken from XPS results for the InP core, 
InP/ZnS core/shell and InP/ZnS core/thicker shell NCs to be 0.2, 1.9, and 9.4. 
 
 
As mentioned earlier, another critical point in the shell formation is the passivation 

of phosphorus oxidation. In Figure 3.4.6, it is realized that, for InP cores, the 

oxidization of P peak is observable at 133 eV binding energy. Additionally, that peak 

may also be attributed to InP-S formation as indicated previously [31]. However, it is 

sure that P2p peak at 133 eV in our case belongs to the oxidization of InP-O since the 

peak diminishes after shell formation. If it would be InP-S, it will be expected to be 

observable even after the shell formation. This result means that the formation of 

shell is successful with the sufficient passivation of the surface and these oxidization 

components can be avoided. Moreover, Figure 3.4.6 reveals that with the further 

shell formation, the components at around 128 eV decreases its intensity since that 

component indicates In-P pair. The component at around 139 eV should not confuse 

us because it emerges from Zn2s and this peak is for Zn-S binding, not related to 

phosphorus. 
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Figure 3.4.6. XPS results of phosphorus peaks for (a) InP core NCs, (b) InP/ZnS 
core/shell NCs, and (c)InP/ZnS core/thicker shell NCs. 

TEM is another widely used technique for the detection of shell formation. As can be 

seen from Figure 3.4.7 for the InP core NCs, Figure 3.4.8 for the InP/ZnS core/shell 

NCs, and Figure 3.4.9 for InP/ZnS core/thicker shell NCs, the shell formation can be 

inferred from increasing diameters of NCs, which are 2 nm, 3.4 nm and 4.2 nm, 

respectively, as also indicated in Section 3.2. 
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Figure 3.4.7. TEM image of InP core NC sample. 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.8. TEM image of InP/ZnS core/shell NC sample. 
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Figure 3.4.9. TEM image of InP/ZnS core/thicker shell NC sample. 

 

3.5. Applications 

InP/ZnS NCs can be used in many different kinds of application areas. They can be 

used as emitters in bio-labeling applications, LEDs, solar cells, and lasers [26, 52, 56]. 

For bio-labeling, phase transfer studies are required since NCs should be in aqueous 

form [57] but the phase transfer is not under the scope of this thesis. However, for 

many other applications, NCs should be in solid film form, especially in flexible form. 

Therefore in this section, the capability of thin film production by using InP/ZnS NCs 

is studied. 

NC thin films can be prepared by mixing poly(methyl methacrylate) (PMMA) or 

poly(dimethylsiloxane) (PDMS) with purified InP/ZnS core/shell NCs. Using PDMS as 

the host gives the property of elasticity to the prepared films compared to the ones 

with PMMA.  
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The blend of PMMA and purified InP/ZnS core/shell NCs can be prepared by mixing 

PMMA with anisole depending on the required thickness of the resulting films. By 

using different PMMA-anisole ratios, the film thickness can be controlled; more 

anisole results in thinner films. Then, according to the required NC density (from 5% 

to 10% in weight ratio), PMMA-anisole and NCs are mixed under sonication until the 

mixture becomes homogeneous. In order to remove the air bubbles formed during 

mixing process, the prepared mixture is taken under vacuum for around 30 min. A 

glass or a wafer can be used to help the film formation by drop-casting mixture onto 

it and after a day, the films can be easily removed from the surface and are ready to 

be used. The prepared free-standing PMMA-NC films are shown in Figure 3.5.1. 

 
Figure 3.5.1. Photographs of InP/ZnS NC-PMMA freestanding membrane films 
(dimensions of 2cm x 3cm) prepared with (a) red-emitting NCs, (b) green-emitting 
NCs, and (c) blue emitting NCs. 
 
 
If PDMS is used instead of PMMA, still following the same process, PMMA is mixed 

with its curing agent instead of anisole with the volume ratio of PDMS:curing 

agent=10:1. Moreover, after having homogeneous and bubble-free mixture, the 

process is continued with baking at 110˚C for 20 min, which was not required for the 
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films made with PMMA. Finally, with the same procedure, the films can be prepared 

and are ready to be used. 

The difference between the films prepared with PMMA and PDMS is their resulting 

film properties; the films with PMMA will become brittle and plastic deformation is 

observed under the strain, whereas the films with PDMS shows more elastic 

property and elastic deformation is observable under strain. 

The normalized photoluminescence results of the NC films prepared with both 

PMMA and PDMS are shown in Figure 3.5.2 and Figure 3.5.3, respectively. The 

Gaussian PL intensity curve for the films represents the good size distribution. Green 

InP/ZnS NCs are prepared according to the first synthesis procedure and the red 

ones are prepared following the second synthesis method, which is described in 

Chapter 2. 

 
Figure 3.5.2. Normalized PL peaks for the thin films of green and red InP/ZnS NCs 
mixed with PMMA. 
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Figure 3.5.3. Normalized PL peaks for the thin films of green and red InP/ZnS NCs 
mixed with PDMS. 

 

Moreover, a larger area freestanding membrane films (over 50 cm x 50 cm), which is 

also shown in Figure 3.5.4, including InP/ZnS NCs prepared with the same process by 

using PMMA and this is achieved by our group [7].  

Figure 3.5.4.  Photograph of a 51 cm x 51 cm InP/ZnS core/shell NC embedded 

membrane films under (a) room light, and (b) UV light [7].  

Finally, our group also managed to present white LED (WLED) by using InP/ZNS NC 

membranes placed over a blue LED, which is purchased. For this proof-of-concept 

work, both the red-emitting and the green-emitting InP/ZnS NCs films are used and 
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WLED is achieved with a high photometric quality. In Figure 3.5.5, the blue LED 

hybridized device and the resulting emission spectra is shown. Membrane based 

WLEDs are the promising candidates for remote phosphor applications. 

 

Figure 3.5.5.  Electroluminescence spectra of white LED using InP/ZnS core/shell NCs 

membrane films applied on a blue LED chip. An exemplary device under operation is 

also shown at right corner. 
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CHAPTER 4 

 

 

CONCLUSIONS 

 

 

Nanoparticles are the major class of quasi zero-dimensional nanomaterials and they 

can be an amorphous or crystalline form. Crystalline nanomaterials are called as 

nanocrystals and studied extensively over the past two decades because of their 

varying application areas. They are studied using different kinds of nanomaterials 

especially with cadmium containing ones because of their well-known optical and 

electronic properties. However, with increasing environmental concerns, 

researchers seek new nanocrystals with similar properties and the most promising 

alternative for such materials is InP nanocrystals. They are competitive with 

cadmium containing ones with respect to their properties and they can also be 

coated by shell materials like ZnS to have superior properties.  

In this thesis, two different synthesis methods were studied for InP/ZnS core/shell 

nanocrystals and more tunable one was selected for further study. One of the most 

important application areas of these nanocrystals is LEDs since these devices can 

save the energy consumed for lightening by fifty percent. Therefore, for better 

quality LEDs, different color components are required and most important one that 

affects the resulting quality is red-emitting nanocrystals having 620 nm emission 

peak with a low standard deviation. Moreover, their quantum efficiency is another 

important parameter for such lighting applications. This color component can be 

obtained by environmental friendly InP/ZnS core/shell nanocrystals because of their 

easy emission tunability. In order to obtain the required parameters with 

environmental friendly nanophosphor materials, some modifications were carried 

out on the existing synthesis techniques and related characterizations were 

performed.  
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Red emitting property was obtained by growing ZnS shell on InP core nanocrystals 

and their crystal properties were studied with transmission electron microscopy 

(TEM) and X-ray diffraction (XRD) measurements. Since these nanophosphor 

materials are very sensitive to oxidization, X-ray photoelectron spectroscopy (XPS) 

was used to determine the effectiveness of shell process with respect to their 

tolerance to oxidization and it was found that growing a shell eliminates oxidization. 

Also, it was confirmed that a thicker shell formation was achievable and it made 

easier to obtain red nanocrystals with oxidization free surface coverage. Besides, 

efficiency calculations were conducted by using UV-Vis NIR and fluorescence 

spectroscopy and found to be around 30% for the core/shell nanocrystals.  

As a result, the targeted red nanophosphor InP/ZnS nanocrystals were obtained, but 

their efficiency studies require more work. Most of the properties of environmental 

friendly InP/ZnS nanophosphor materials are comparable to cadmium containing 

counterparts except that their efficiencies should be increased with additional 

studies. Finally, for an application demonstrator, the prepared InP/ZnS nanocrystals 

are shown to be applicable to the freestanding elastic films even manageable in 

large-area dimensions. 
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APPENDIX 

 

Sample Mathematica Code 

The code that was used to evaluate the core/shell NC sizes was written with the help 

of Dr. Vijay Kumar Sharma. Mathematica program based on (10) is included as 

below. 

Rc= Core Radius; 

1= mean free path for core material; 

2= mean free path for shell material; 

shellcore= ratio of shell to core obtained from XPS 

divided by (8); 

 

f[R_,r_,_]:=(R^2-(r*Sin[])^2)1/2-r*Cos[]; 

 

NPCore=N[Integrate[(Exp[-

(f[Rc,r,]/1)]*r2*Sin[]),{r,0,Rc},{,0,}]]; 

FindRoot[(shellcore)*(NPCore)N[Integrate[(Exp[-

(f[Rs,r,]/2)]*r2*Sin[]),{r,Rc,Rs},{,0,}]],{Rs,Rc}] 


