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ABSTRACT 

EXCITON HARVESTING SYSTEMS OF 

NANOCRYSTALS 
 

Evren Mutlugün 
Ph.D. in Physics 

Supervisor: Assoc. Prof. Dr. Hilmi Volkan Demir  
December 2011 

 

Semiconductor nanocrystals, also known as colloidal quantum dots, have gained 

substantial scientific interest for innovative light harvesting applications 

including those in biolabeling. Organic dyes and fluorescent proteins are widely 

used in biotargeting and live cell imaging, but their intrinsic optical properties, 

such as narrow excitation windows, limit their potential for advanced 

applications, e.g., spectral multiplexing. Compared to these organic 

fluorophores, favorable properties of the quantum dots including high 

photoluminescence quantum yields together with tunable emission peaks and 

narrow spectral emission widths, high extinction coefficients, and broad 

absorption bands enable us to discover and innovate light harvesting composites. 

In such systems, however, the scientific challenge is to achieve high levels of 

energy transfer from one species to the other, with additional features of 

versatility and tunability.  

To address these problems, as a conceptual advancement, this thesis proposes 

and demonstrates a new class of versatile light harvesting systems of 

semiconductor nanocrystals mediated by excitonic interactions based on Förster-

type nonradiative energy transfer. In this thesis, we synthesized near-unity 

efficiency colloidal quantum dots with as-synthesized photoluminescence 

quantum yields of >95%. As proof-of-concept demonstrations, we studied and 

achieved highly efficient exciton harvesting systems of quantum dots bound to 

fluorescent proteins, where the excitons are zipped from the dots to the proteins 

in the composite. This led to many folds of light harvesting (tunable up to 15 
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times) in the case of the green fluorescent protein. Using organic dye molecules 

electrostatically interacting with quantum dots, we showed high levels of 

exciton migration from the dots to the molecules (up to 94%). Furthermore, we 

demonstrated stand-alone, flexible membranes of nanocrystals in 

unprecedentedly large areas (> 50 cm × 50 cm), which paves the way for high-

end, large-scale applications. In the thesis, we also developed exciton-exciton 

coupling models to support the experimental results. This thesis opens up new 

possibilities for exciton-harvesting in biolabeling and optoelectronics. 

 

Keywords: Semiconductor nanocrystals, nonradiative energy transfer, excitons, 

light harvesting. 
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ÖZET 

NANOKRİSTALLİ EKSİTON HASATI SİSTEMLERİ  
Evren Mutlugün 

Fizik Bölümü Doktora 
Tez Yöneticisi:  Doç. Dr. Hilmi Volkan Demir 

Aralık 2011 
 
Kolloidal kuantum noktacıkları olarak da bilinen yarı iletken nanokristaller, 

biyo-etiketlemenin de içerisinde olduğu yenilikçi ışık hasatı sistemleri için 

oldukça büyük bilimsel ilgi kazanmıştır. Organik boyalar ve floresan proteinler, 

biyo-hedef ve canlı hücre görüntüleme için sıklıkla kullanılsa da, sahip oldukları 

esas optik özellikleri, dar uyarım penceresi gibi, onların ileri uygulamalar için 

kullanımlarını, örn. spektral çoklama, sınırlamaktadır. Organik ışıyıcılarla 

karşılaştırıldığında kuantum noktacıklarının sahip olduğu yüksek fotolüminesans 

verimliliği, ayarlanabilir ışıma dalga boyları, dar ışıma tayfları, yüksek soğurma 

katsayıları ve geniş soğurma tayfları gibi üstün özellikleri yenilikçi ışık hasatı 

kompozitlerini keşfetmemizi sağlamaktadır. Bu sistemlerde ise bilimsel zorluk, 

bir türden diğerine, ayarlanabilir ve farklı şekillerde uygulanabilir özellikleriyle  

yüksek verimli enerji transferi elde etmektir. 

Bu tez, bu sorunları karşılamak için kavramsal bir ilerleme olarak, Förster tipi 

ışınımsal olmayan enerji transferi temelli eksitonik etkileşime dayanan, yeni 

sınıf farklı şekillerde uygulanabilir yarı iletken nanokristalli ışık hasatı 

sistemlerini önerip göstermektedir. Bu tezde biz, sentezlendiği hali ile 

fotolüminesans kuantum verimlilikleri %95’ten daha yüksek kolloidal kuantum 

noktacıklarını verimlilikleri tama yakın şekilde sentezledik. Kavramsal ispat 

olarak, kompozit yapı içerisinde eksitonların kuantum noktacıklardan flöresan 

proteinlere gönderildiği, yüksek verimlilikte eksiton hasatı elde ettiğimiz 

proteinlere bağlı noktacıkları sistemlerini çalışıp elde ettik. Bu çalışmalar yeşil 

flöresan protein için çok yüksek kat (15 kata kadar ayarlanabilir) ışık hasatını 

sağlamıştır. Organik boya moleküllerini kuantum noktacıkları ile elektrostatik 

olarak etkileştirerek, noktacıklardan moleküllere yüksek verimlilikle (%94’e 

kadar) eksiton transferini gerçekleştirdik. Bununla birlikte üst düzey büyük 
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alanlı uygulamalara yol açan, daha önce hiç benzeri görülmemiş, büyük alanlı    

(50 cm × 50 cm’den büyük), tek başına ayakta durabilen, esnek nanokristal 

membranlarını gösterdik.  Bu tezde ayrıca deneysel sonuçlarımızı desteklemesi 

için eksiton-eksiton çiftlemesi esasına dayanan modelleme yaptık. Bu tez 

biyoeiketleme ve optoelektronikte eksiton hasatı için yeni olasılıklar açmaktadır.  

 

Anahtar kelimeler: Yarı iletken nanokristaller, ışınımsal olmayan enerji 

transferi,eksitonlar, ışık hasatı. 
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Chapter 1  
 
Introduction 
 

 

 

 

 

 

Efficient light harvesting for biolabeling has been one of the scientific 

challenges to date. The detection of molecules, tissue imaging, and cell tracking 

require better imaging, higher resolving power, and more efficient use of the 

incident light to overcome the existing limitations. The fluorophore organic dyes 

and fluorescent proteins are among the early examples of the fluorescent tags 

used widely in bio-related research for the detection of targeted cells and bio-

labeling [1,2,3]. 

 

The wide-scale use of the organic dyes and fluorescent proteins have opened 

many possibilities. Control of the chemical structure and modifications of the 

functional groups make these fluorophores good candidates for superior bio-

detection and tagging systems because of their biocompatibility [4,5]. However, 

these fluorophores exhibit a characteristic optical absorption and emission 

spectra which cannot be tailored easily. The organic dyes and fluorescent 

proteins possess narrow absorption windows and they cannot be excited beyond 

their characteristic spectral excitation ranges. Also, their absorption and 

emission spectra overlap significantly. As a result, the absorption suppresses the 

emission, limiting their performances and the possible use for high-end 

applications [6,7,8

Starting in 80s, there was a breakthrough in the science of colloidal particles 

with the invention of nanocrystal quantum dots (QDs) [

]. 

 

9], the tiny bulbs which 

are superior to the existing fluorophores, since they have size dependent 

emission characteristics, an order of magnitude higher extinction coefficients 
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and brightness, and broader excitation windows, as compared to the other 

members of the fluorophores [10,11]. With the introduction of this new member 

to the fluorophores family, the QDs have gained substantial interest in the last 

few decades for many prospective applications, i.e., from solar cells and light 

emitting diodes [12,13], to in-vivo bio-imaging and photodynamic therapy 

applications [14,15]. Beginning with 90s, the method of hot injecting precursors 

during colloidal  QD synthesis [16,17] allowed for highly monodisperse and 

high quantum yield particles. Owing to their outstanding optical characteristics, 

the nanocrystal QDs have been considered as an alternative to overcome the 

dominant use of organic dyes and fluorescent proteins. 

 

From the applications point of view, because of their size tunable superior 

properties, semiconductor nanocrystals have been used in optoelectronics and 

biorelated applications. Solar cells, detectors, and light emitting diodes are 

among the well known examples for the use of the QDs in optoelectronics. In 

solar cells, QDs have opened the new path for the 3rd generation solar cells. 

QDs offer the potential to overcome the thermodynamic limiting efficiency of 

the solar cells with multi-exciton generation [18

In their work Huynh et. al. demonstrated the solar cells composed of CdSe 

nanorods in P3HT polymer blends with external quantum efficiencies of 59% 

[

]. 

 

19].  In their work, Luther et al., demonstrated the solar cells using PbSe QDs 

with overall efficiency of 2.1% under AM 1.5G solar radiation, reaching 

external quantum efficiency levels of 55-65% in the visible [20]. Recently, the 

Sargent Group have demonstrated colloidal QD solar cells using PbS 

nanocrystals together with TiO2 nanoparticles doped by Zr, with 5.6% 

efficiency, improving the charge spearation [21]. In QD sensitized solar cells, 

QDs come into play as the sensitizers instead of the dyes used in dye sensitized 

solar cells. They are expected to boost the Si solar cells at reduced costs. Lee et 

al. demonstrated the use of  CdSe QDs with efficiencies larger than 1% when 

used with TiO2 [22]. Using the wider gap ZnS overcoating CdSe cores, Toyoda 
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et al. demonstrated efficiency levels of >2% [23]. Recently, Zhang et al. studied 

the structural properties of the photoelectrode and reported the highest QD 

sensitized solar cell efficiency of 4.79% [24]. 

 

The first reports demonstrating  LEDs made from colloidal QDs had relatively 

poor efficiencies [25,26]. In 2002, electroluminescence has been shown in 

monolayers of the core/shell QDs sandwiched between the electron and hole 

transport layers by Coe et al. [27]. This study is one of the first reports to open 

the way for the QD-LED research later followed by other reports aiming for 

higher performance [28,29]. Different than these previous reports that present 

such QD-LEDs, our group have demonstrated tunable photometric performance 

of white color-conversion LEDs, (WLED) based on the quantum dots used as 

luminophores [30]. Recently, research efforts using QDs within the display 

applications have emerged owing to the advances in the mature synthesis of 

these QDs together with their successful LED demonstrations [31,32

One of the major steps for the QDs to be used in biorelated applications is their 

biocompatibility. Since water is the natural media for the living things, the 

solubility of QDs is a crucial step for using them as an active component in 

]. 

 

In bioapplications, the use of QDs have evolved during the past few last years 

due to the need for a better imaging contrast, enabling long live cell imaging, 

stability and multicolor labeling. Due to the intrinsic drawbacks of using organic 

fluorophores, semiconductor nanocrystals have been an alternative in biorelated 

targeting, sensing, and imaging applications. As compared with the organic 

fluorophores, semiconductor nanocrystal QDs offer size dependent emission 

characteristics, narrow and symmetric emission spectra preventing crosstalk in 

multicolor labeling, higher quantum yield and broad absorption spectra, 

providing increased imaging frequency in multicolor labeling and one order of 

magnitude higher photostability, making them a good candidate for long term 

live cell imaging. 
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living organisms. The ligands attached to the QDs determine the solubility of the 

QDs in various media. Therefore, unless synthesized in water, the QDs need to 

be dissolved in water before being utilized in bioapplications. The solubility in 

water is achieved by ligand exchange [33]. By using the ligand exchage, the 

QDs are able to be dissolved in water but it comes at the cost of decreased 

quantum yields, which has been a major issue to address in the ligand chemistry 

for inorganic quantum dots. One of the other crucial factors is the 

functionalization of the QDs to provide the biocompatibility. Surface capping 

methods and functionalizations using different biofunctional mechanisms have 

been employed specific to various applications [34,35]. 

 

Due to the fact that the QDs have order an of magnitude higher lifetime than the 

organic dyes, they have been employed to reduce the naturaly occuring 

autofluorescence of the cells, which is comparable with the lifetime of the 

organic dyes. This enables the enhancement of the image contrast by the use of 

the QDs [36]. The QDs broad absorption spectra makes multicolor labeling 

possible for in vivo applications, where different biomarkers are tagged by using 

different QDs [37,38]. Imaging by the use of the QDs have found a wide area of 

interest in the imaging of the cancer cells. For example, a polypeptide-quantum 

dot hybrid assembly have been utilized for the  detection of cancer cells recently 

[39]. In another study, the detection of human prostate cancer using QDs 

encapsulated in a triblock polymer has been demonstrated by Nie Group [40]. 

 

Immunoglobin G and streptavidin linked quantum dots have been used for 

labeling the breast cancer in the work of Wu etal. [41]. Besides, QDs have been 

employed as selective species to probe the targeted cells [42]. They have been 

utilized for live tracking the biomolecular transportation by Dahan et al. Not 

only for the biolabeling and cell imaging, QDs have been employed but also as 

drug delivery agents [43].  
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One of the key problems in the application of QDs in living cells is their 

possible toxitocity. The toxitocity of the QDs depends on many factors. The 

physical properties of the QDs as well as their surface functionalization play an 

important role for the mechanisms governing the toxicity. One of the major 

problems in the toxicity is the generation of the reactive oxygen species during 

the excitation of the QDs. Ipe et al. showed that the formation of the reactive 

oxygen species has been reduced by overcoating QDs with a shell material [44]. 

 

Apart from the systems of QD-bioconjugate complexes, the QDs have also been 

used together with organic dyes and fluorophores. This is because of the narrow 

emission bandwidth of the QDs, well separated from their absorption spectra. 

The nonradiative energy transfer mechanism employing both the QDs and the 

fluorophores has served as a nanoruler for the purpose of probing the changes in 

the conformational structure of the molecule. Using the energy transfer 

mechanism between the QDs and fluorophores, it is possible to track the 

molecular distance, which has been one of the major overarching goals of the 

QD-fluorophore systems [45

Medintz et al., discuss the design of biosensors for the detection of the maltose 

based on the FRET mechanism utilizing QDs [

]. Thus far, FRET has also been used as a powerful 

tool for the determination of the biomolecular activity and the determination of 

the intermolecular species within the moleculas, as well as the conformational 

changes. The dipole-dipole interaction among the longer exction lifetime donor 

and the shorter lifetime acceptor species facilitate the FRET mechanism, which 

has been further detailed in the coming chapters. Till date FRET has been used 

in various quantum dot-organic dye and fluorescent pairs for various goals, 

except for light harvesting, which is the topic of this thesis. Some of the 

previous examples will be outlined in here.  

 

46]. In another study, the same 

group have employed the QDs as acceptor molecules together with the dye 

labeled proteins and reported that they have not observed FRET between these 
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pairs implying that the exciton lifetimes play a critical role in the FRET based 

systems [47]. 

Monitoring the hybridization of the QD-dye pairs by the FRET mechanism and 

labeling the functionalized DNA sequence have been studied by the Banin 

Group [48]. Within our group, the enzymatic control of the FRET among the 

bilayers of QD-peptide complexes have been demonstrated [49]. Samia et al. 

discussed the photodynamic therapy using the QDs triggering the photodynamic 

therapy agent facilitated by FRET [15]. The use of CdTe QDs for the detection 

of cancer markers with the FRET based biosensing mechanism has been 

demonstrated in the work of Liu et al. [50]. Another example application has 

been reported by the Nocera Group, demonstrating the energy transfer from 

CdSe/ZnS QDs to pH sensitive dye molecules as to be employed as a pH sensor 

[51]. The Mattousi Group have employed the QDs together with dye molecules 

to study the FRET based multiplexing, namely using single excitation source to 

excite different molecules simultaneously [52]. The work of Bagalkot et al. is a 

good example of the FRET mediated cancer imaging and drug delivery systems 

[53]. QDs have been employed further as both donor and acceptor species in 

cascaded energy transfer studies for detection of bioactivity in the work of the 

Rogach Group [54]. Our group has also studied FRET among the bilayers of 

CdTe QDs for tuning the color chromacity [55

In the scope of this thesis work, different than the previous works of our group 

and the others, we propose and demonstrate a versatile, tunable class of light 

harvesting composites containing the QD-organic dye and QD-fluorescent 

protein complexes mediated by the nonradiative energy transfer to overcome the 

limitations of the organic dye molecules and fluorescent proteins. Here, the 

nonradiative energy transfer between the QD-organic dye pairs and QD-

fluorescent proteins has been studied in detail. The light harvesting resulting 

]. In addition to all above, other 

examples of the QDs-organic dye FRET studies reported in the previous 

literature have been explained in relevance to the presented thesis work in the 

related chapters. 
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from the energy transfer, together with a detailed study of the time resolved 

kinetics, has been implemented for the first time. In addition, the large-area 

membranes of flexible, stand-alone QD-polymer composites have also been 

demonstrated. Following the Introduction in Chapter 1, the organization of the 

rest of this thesis is given as follows: 

 

Chapter 2 presents  the background information of the nanocrystals, their optical 

properties and the synthesis studies of different sized CdSe, CdSe/CdS, CdTe, 

and InP/ZnS QDs. 

 

Chapter 3 is devoted to the discussion of the de-excitation paths of quantum dots 

including the energy diagram, and introduction of the Förster-type nonradiative 

energy transfer, along with the theoretical derivation showing the r-6 dependence 

of the energy transfer given in the Appendix.                             

 

Chapter 4 explains the experimental methods used in the context of the thesis.                                                                                                                                                                                                                                                                                                  

 

Chapter 5 presents the demonstration of enhancement in the emission of the 

green fluorescent proteins attached to the QDs. The theoretical model of the 

resulting nonradiative energy transfer is also explained in the context of this 

chapter. 

 

Chapter 6 demonstrates the use of positively charged CdSe/ZnS core/shell QDs 

for the energy transfer to organic dye molecules, emphasizing the charge effect 

to mediate the interaction among the particles with the highest reported FRET 

efficiency levels. 

 

Chapter 7 describes the light harvesting of dye molecules mediated by FRET in 

solution  by using different sized water based CdTe QDs. 
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Chapter 8 presents the energy transfer among different sized Cd-free QDs as 

well as the study of the temperature dependent emission kinetics. The 

demonstration of the large-area membranes of the QD-polymer composites and 

their use for white light generation with a performance level beyond the state-of-

the art is also included in this chapter. 

 

Chapter 9 concludes this dissertation, summarizing the achievements of this 

thesis work along with a future outlook. 
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Chapter 2 
 

Semiconductor Nanocrystals 
 
 

2.1 Background information 
 

Semiconductor nanocrystals, also known as the colloidal quantum dots (QDs), 

are particles consisting of 100-1000 atoms in the form of a crystal structure. The 

band gap engineering, made possible by choosing the right size of the 

nanocrystals, make them a great candidate for a wide range of possible 

applications. The three-dimensional quantum confinement results in the 

pronounced characteristics on these optical properties. Unlike the continuum 

energy states in bulk semiconductors, when the size of the crystal decreases, as 

in the case of nanocrystals, the energy levels start to get discrete. The 

phenomenon of strong quantum confinement arises, when the particle size is 

typically close to the exciton Bohr radius of the material. Depending on the size 

of the nanocrystal, greater or smaller than the exciton Bohr radius, the 

confinement of the nanocrystals is regarded as weak, intermediate or strong 

[56]. 
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Figure 2.1.1 E-k diagram for bulk semiconductor crystal and semiconductor nanocrystal. 

 

 

In a typical way, the incident photon with an energy greater than the band gap 

energy of the nanocrystals is absorbed. Subsequently, a bound electron and hole 

pair with Coulombic interaction, called exciton, is created. In order to fit their 

wavefunction in the finite size crystal, quantum confinement arises. In bulk 

semiconductors, since the size of the exciton is much smaller than the crystal 

size, and the charge carriers are free to move, i.e., not confined. The E-k 

diagram for bulk semiconductor crystal and semiconductor nanocrystals is given 

in Fig. 2.1.1. The band gap of a QD is given for the first excited electron state 

as, 
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2.1.1 

where em  and hm are the effective masses of the electron and the hole, 

respectively, 0ε  is the permittivity of free space, ε  is the relative permittivity, e

is the electron charge, and r  is the QD radius [57]. The second and third terms 
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in Eqn. 2.1.1 correspond to the energy of the first excited state, whereas the 

fourth term is due to the Coulombic interaction of the electron-hole pairs, and 

shadowed by the first terms in Eqn. 2.1.1, for the low-dimensional systems. 

 

Using the quantum confinement, it is possible to engineer the emission and 

absorption characteristics of the QDs. Smaller sized dots have blue shifted 

emission and absorption profile as compared to the larger sized QDs, due to 

their effectively larger band gap, as clearly observed from Eqn. 2.1.1. The 

chemical composition and the stochiometric ratio between the elements also 

determine the emission wavelength of the resulting nanocrystal synthesized. 

Designing the nanomaterial of interest is possible, thanks to the ongoing 

research efforts on the synthesis of the colloidal QDs. 

 

Till date, many different kinds of quantum dots have been studied for their 

synthesis and applications. The particles of interest are mainly the II-VI, III-V 

and IV-VI group elements. In accordance with the range of their emission 

wavelengths, CdSe, CdTe, and CdS are among the mature examples of the II-VI 

group [58,59,60,61], together with III-V type InP based dots, emitting in the 

visible range [62,63], III-V ZnSe and ZnS structures govern the UV range, 

[64,65], whereas IV-VI  group PbSe and PbS emit in the n-IR and IR emission 

range [66,67]. 

 

Besides core nanocrystals, there are also core/shell type QDs, which typically 

consist of a wider band gap material surrounding the core nanocrystal (e.g.,    

type 1 core/shell QDs). The wider band gap shell serves as a potential barrier for 

the confinement of the wavefunction into the core. Few examples are CdSe/CdS, 

CdSe/ZnS, and InP/ZnS where the shell material is overcoated on the core to 

provide stability and enhanced emission [68,69,70

One of the key factors in the QD synthesis is the ligands and the surfactants 

associated with the QDs. The ligands surrounding the nanocrystals provide 

]. 
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stability, make the QDs soluble in the appropriate environment and prevent them 

from agglomeration [71]. In the case of chemical interactions to make a 

composite structure with a QD; the ligand chemistry is an important area for 

bridging the QD to the desired part of the integrated species, e.g., a protein, and 

DNA. [72

 

] Using the appropriate precursors for the synthesis, the ligand, and 

the solvent, the synthesis is carried out by controlled heating under inert 

atmosphere within the fumehood (see Fig. 2.1.2). 

 

Figure 2.1.2 Synthesis set-up in fumehood together (with an inset of the synthesis reaction 

flask (top right) at the Demir Lab. 
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Figure 2.1.3 Glove box (nitrogen filled), used for storage and preparation of the chemicals 

used in the synthesis at the Demir Lab. 

 

As mentioned previously, the optical properties of QDs are engineered by 

changing the size of the particles. The absorption features of QDs are given 

below (Fig. 2.1.4) for a series of different sized dots. Their optical absorption 

increases through the UV portion of the spectra. The peak in the absorption 

spectra is called the first excitonic peak, and depending on the characteristics of 

the QD, there may be other pronounced peaks as well, corresponding to higher 

photon energies.  
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Figure 2.1.4 Absorption spectra of different sized CdTe QDs at room temperature.  

 

 

The emission spectra, however, is narrow and Gaussian like (see Fig. 2.1.5), 

separated from the absorption peak by Stokes shift. The full width at half 

maximum (FWHM) value of the QD emission is typically determined by the 

monodispersity of the QDs in the inhomogenous broadening regime, used as a 

figure of merit for their optical performance.  

 

Figure 2.1.5 Normalized photoluminescence spectra of different sized CdTe QDs at room 

temperature. 
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2.2 Synthesis of II-VI QDs 
 

The nanocrystals undergo various stages during the growth. These are the 

nucleation, growth, and isolation of the particles of proper size. In order to have 

monodisperse particles, which have a small size variation, the nucleation and the 

growth stages should be carried out at different temperatures, in the case of the 

hot injection method, or should be heated for long times at the same temperature 

[73

2.2.1 Synthesis of core QDs 

]. The methods introduced here are used during the synthesis of the QDs 

employed in this thesis work. The materials of interest for the synthesis of the   

II-VI QDs are the aqueous CdTe, organic CdSe, and core/shell structured 

CdSe/CdS QDs. 

 

 

2.2.1.1 Aqueous CdTe QD synthesis 

 
In the synthesis of aqueous CdTe QDs, cadmium per chlorate hexahydrate 

(Cd(ClO4)2×6H2O), thioglycolic acid (TGA), aluminum telluride (Al2Te3), 

sulfuric acid (H2SO4), and sodium chloride (NaCl) are obtained from vendors 

and directly used without further purification. Our synthesis procedure follows 

the method previously described in the literature [74,75

×

]. In our synthesis, 4.59 

g of Cd(ClO4)2 6H2O is dissolved in 0.5 L of Milli-Q water in three-neck 

reaction flask. 1.33 g of TGA is added to the mixture, which turns into milky 

appearance. The pH of this mixture is then increased to 11.8 – 12.0 by dropwise 

addition of NaOH upon vigorous stirring. After this step, the reaction mixture 

becomes clear or slightly turbid. To prepare tellurium precursor, 0.8 g of Al2Te3 

is transferred into a small three-neck flask in the glove box and then deaerated 

by passing Argon (Ar) for 50-60 min in the setup. 10 mL of deaerated 0.5 M 

H2SO4 is slowly poured into Al2Te3 lumps to produce H2Te gas, which is carried 



16 
 

out by a slow Ar flow and bubbled through the mixture containing cadmium 

precursor for 40-50 min. The resulting red-black mixture is refluxed at 100 oC to 

obtain the desired nanocrystal size. The reaction mixture is then cooled to room 

temperature and filtered. The CdTe QDs are finally separated by size selective 

precipitation. The size selective precipitation is a post synthesis treatment and 

allows for separation of similar sized QDs in the same batch, thus providing 

better monodispersity after the synthesis. We use the CdTe QDs emitting in 

visible. The n-IR emitting CdTe is also possible by using mercaptopropionic 

acid (MPA) instead of TGA [76

 

]. 

Figure 2.2.1.1.1 Absorption spectra of aqueous CdTe QDs at room temperature with the 

alequots taken during the growth of these QDs. 
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Figure 2.2.1.1.2 Normalized photoluminescence (PL) spectra of the as-synthesized aqueous 

CdTe QDs at room temperature.

 

Figure 2.2.1.1.3 Quantum yields of different sized CdTe QDs at room temperature. 
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As shown in Fig. 2.2.1.1.1 and 2.2.1.1.2, the CdTe QDs grow in size with 

increasing the time associated with the synthesis. The possible emission peak 

wavelength achievable with the recipe followed runs around from 525 to 610 nm 

maximum using the thioglycolic acid as the surfactant. The trend of the quantum 

yield is increasing when the particles grow bigger in size up to a certain point, 

showing the increase in the stability of the particles (see Fig. 2.2.1.1.3). 

However, the quantum yield starts decreasing after long time exposure to 

heating due to the internal growth dynamics within the reaction flask. The 

resulting QDs have years long shelf life when stored in cold and dark conditions.  

 

2.2.1.2 Organic CdSe QD synthesis 

 

In a typical synthesis of CdSe nanocrystals, Cadmium Oxide, CdO (Acros Org.), 

Oleic Acid, OA (JT Baker) 1-Octadecene, ODE (Acros Org.) Selenium powder 

(Acros Org.), 1-Hexadecylamine, HDA (Acros Org.) and Trioctylphosphine, 

TOP (Sigma Aldrich) are used as pure as supplied from the companies without 

further purification. The cadmium stock solution is prepared by mixing       

513.6 mg CdO, 6.3 mL OA and 40 mL ODE. The mixture is evacuated with 

raising the temperature at 100 oC and then heated to 300 oC until a transparent 

solution is achieved. The injection solution is prepared by adding 0.4 mL of Se 

solution (1 M in TOP, prepared in glove box at 200 oC) to 1.6 mL of TOP and 2 

mL of ODE. The synthesis is carried out under fumehood, with a Shlenk line 

connected to vacuum and pure Ar line.  During the synthesis 4 mL of Cd stock 

solution is mixed with 2 g TOPO, 2 g HDA and 8 mL of ODE in a 3-neck glass 

flask. The mixture is evacuated under Schlenk line with raising the temperature 

to 100 oC under stirring. The mixture is then heated up to 300 oC under Ar flow 

and the temperature for injecting 4 mL of TOP-Se-ODE mixture is set to be    
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280 oC. The nanocrystals are grown under 250 oC within few minutes. The 

resulting QDs have a quantum yield of about 35%. 

 

The synthesized CdSe nanocrystals synthesized have been used in our 

experimental work [77]. The emission and absorption spectra of the CdSe is 

given in Fig. 2.2.1.2.1 and the high resolution TEM image is given in Fig. 

2.2.1.2.2.  

 

Figure 2.2.1.2.1 Photoluminescence and absorption of organic CdSe QDs at room 

temperature (Reproduced with permission after [77].) 
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Figure 2.2.1.2.2 TEM image of organic CdSe QDs. The scale bar is 5 nm.  

 

2.2.2 Synthesis of core/shell QDs 

 

The synthesis of core/shell QDs is desired because of the well passivation of the 

core QDs, together with their resulting highly emissive profile. The core/shell 

QDs are regarded as type I or type II depending on the core and shell band 

alignment. In the type I architecture the electron and holes are confined in the 

core, whereas in the type II QDs, the electron is located in the core while the 

hole is in the shell, thus decreasing the overlap integral between their 

wavefunctions. The material of interest here is type I CdSe/CdS core/shell 

architecture. One of the important points in choosing the right material for 

overcoat is that there should not be a considerable lattice mismatch between the 

core and the shell. Otherwise, the resulting core/shell material will be suffering 

from the strain build-up.  Starting with the core material, there are various 

recipes for overcoating. Unless the calculations are carried out precisely, the 

resulting core/shell QDs do not provide high quality optical properties. Here we 

follow a method of successive ion layer adsorption reaction (SILAR). In this 

approach, starting with the core material, first, the concentration of the core 
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material as well as the size of the core is calculated precisely using the 

absorbance value obtained from the spectrophotometer. The logic behind this 

method is to calculate the amount of shell material for each and every 

monolayer (ML) coated on the existing core. The amount of shell precursors for 

a single QD is calculated, and then multiplied with the total core QD amount, in 

order to predict a correct calculated value of shell precursor. As the number of 

monolayers increase, the next monolayer is coated with the appropriate amount 

of precursors taking into account the previous monolayer thickness increase. 

 

2.2.2.1 CdSe/CdS core/shell QDs 

 

The synthesis is based on the recipe followed by Bawendi Group [78

Before the shell material is injected, we follow the preparation of Cadmium 

oleate. As a precursor for the synthesis, CdO dissolved in oleic acid (OA) and 

octadecene (ODE) is prepared under ambient atmosphere at 300 oC and kept in 

the glove box environment as cadmium oleate ready for the shell coating. For 

the overcoating, Cd-oleate and sulfur (S) dissolved in TOP is prepared in a glove 

box, taken in glass syringes and left aside. On the other side, CdSe, which is 

already prepared, is mixed with oleylamine and ODE in the system, and left 

]. For the 

synthesis of the core material, we use cadmium oxide (CdO), 

tetradecylphosphonic acid (TDPA) as the ligand, and octadecene (ODE) as the 

solvent. The mixture with pre-determined concentrations is heated up under 

inert atmosphere to 273 oC, followed by the injection of Selenium (Se)-

Tributhylphosphate (TBP) mixture. The desired core size is achieved upon 

continuing the synthesis after the injection of the Se precursor. Once the core 

material is ready, it is cleaned well from the excess ligands, using acetone-

methanol extraction by centrifuging and dissolved in fresh hexane. 

Approximately 10 µL of the synthesized volume is used to determine the core 

size and the concentration. 
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under vacuum for the evaporation of the hexane. At 180 oC, significantly below 

the core growth temperature, the Cd and S solutions are injected dropwise using 

a syringe pump and the formation of shell ML is completed. This kind of a 

complete and careful study results in highly efficient (near unity quantum 

efficiency), monodisperse nanocrystal QDs (see Fig. 2.2.2.1.1. for our high 

resolution TEM image), with a <30 nm emission FWHM value of a desired size. 

Fig. 2.2.2.1.2 shows the emission and absorption spectra of the core CdSe and 

CdSe/CdS core shell quantum dots synthesized. The quantum efficiency changes 

with the monolayers. Increasing the number of monolayers, the passivation 

increases. However, at the same time, induced strain also increases. At the very 

end, annealing increases the overall efficiency. 

 

 

Figure 2.2.2.1.1 High resolution TEM image of the CdSe/CdS QDs. The scale bar is 5 nm. 
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Figure 2.2.2.1.2 Emission and absorption spectra of the core CdSe and core/shell 

CdSe/CdS QDs at room temperature with an increasing number of shell monolayers (ML). 

The quantum efficiency values are given on each individual graph.   

  

 

       

Figure 2.2.2.1.3 Picture of our highly efficient CdSe/CdS QDs under UV light. 
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2.3 Synthesis of III-V QD synthesis 
 

2.3.1 InP/ZnS QD synthesis 

 

All reactions are performed under inert Ar atmosphere on a Schlenk line or in a 

glove box. For the synthesis of the green emitting donor InP/ZnS QDs, we 

followed the recipe by Reiss and coworkers [79]. In a typical one pot synthesis, 

0.1 mmol Indium Myristate (prepared by dissolving Indium Acetate in Myristic 

Acid, In:MA:1:4.3), 0.1 mmol Zinc Stearate, 0.1 mmol Dodecanethiol (DDT) 

and 0.1 mmol Tris(trimethylsilyl)Phosphine (TMS-P) are dissolved in 8 mL 

Octadecene, mixed in a 3-necked 25 mL flask and evacuated at room 

temperature. The mixture is quickly heated to 300 ºC under Ar or N2 flow, and 

the growth of the QDs occurs in minutes after the targeted temperature is 

achieved. Longer heating times result in shifting of emission peak. However, not 

only the heating time, but also the ratio of the chemicals used determines the 

optical properties of the resulting QDs. Increasing the concentration of the 

Myristic Acid in Indium Myristate, the emission red-shifts. Decreasing the DDT 

concentration blue-shifts the emission with decreasing the quantum yield. The 

QDs with FWHM values of 40-50 nm with a QE maximum of ~35% are 

achieved using this method described here. The absorption and emission profiles 

of the one pot synthesis of InP/ZnS QDs are given in Fig. 2.3.1.1 and Fig. 

2.3.1.2. 
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Figure 2.3.1.1 Absorption profile of one pot synthesis of InP/ZnS core/shell QDs at room 

temperature along with a picture of the dots under UV-illumination. 

 

Figure 2.3.1.2 Emission profile of one pot synthesis of InP/ZnS core /shell QDs at room 
temperature. 

 
In order to achieve orange/red emitting QDs, a modified version of a previous 

recipe [80] is used. For the core InP QDs, 0.1 mmol Indium Chloride, 0.1 mmol 
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Stearic Acid, 0.08 mmol Zinc Undecylenate, and 0.2 mol Hexadecylamine are 

dissolved in 3 mL ODE and heated to 240 ºC under mixing in inert atmosphere. 

At that temperature the phosphor precursor (0.5 mL Tris(trimethylsilyl) 

Phosphite dissolved in octadecene, c = 0.2 mmol/mL) is injected and, after the 

core growth is established at 220 ºC for 20 min, the mixture is cooled to room 

temperature. For the shell growth, 0.3 mmol Zinc Undecylenate is mixed with 

the prepared core QDs and evacuated well before heating. The solution is then 

heated up to 220 ºC and 1 mL of Cyclohexyl Isothiocyanate/octadecene solution 

(c = 0.15 mmol/mL) is injected as the sulfur source followed by increasing the 

temperature to 240 ºC and growth till the desired emission wavelength is 

achieved. The injection temperature of the core and shell determines the 

emission wavelength of the QDs synthesized. The best results achieved by 

injecting the core precursors at 240 ºC and the shell precursors at 220 ºC. 

Increasing the injection temperatures for the core and shell precursors red-shifts 

the emission. Fig. 2.3.1.4 and 2.3.1.4 shows the emission and absorption profiles 

of the different sized InP/ZnS QDs synthesized using two step approach. 

 

Similar to the one pot synthesis approach, the quantum yields of the red-emitting 

QDs achieved by using a two step approach also results in relatively large 

FWHM values with smaller quantum yields compared to their II-VI 

counterparts. One possible explanation for such a kind of relatively low quality 

nanocrystals in the case of III-Vs is their surface trap states preventing the 

formation of high quality material [81]. 
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Figure 2.3.1.3 Absorption spectra of two step synthesis of InP/ZnS core/shell QDs at room 

temperature, along with a picture of the dots under UV illumination. 

 

Figure 2.3.1.4 Emission spectra of two step synthesis of InP/ZnS core/shell QDs at room 

temperature. 
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Chapter 3 
 

Nonradiative Energy Transfer 
 

3.1 Excitation and de-excitation paths 
 

 

 
Förster type nonradiative energy transfer can be modeled as a dipole-dipole 

interaction. Figure 3.1.1 illustrates the schematic representation of the donor and 

acceptor quantum dot species, together with their energy diagram showing the 

excitation and de-excitation paths as well as the energy transfer process. Here, 

the incident photon with energy ( laserω ) larger than the band gap of the donor is 

absorbed by the donor and the acceptor (blue dashed line). The absorption of the 

incident photon is a relatively fast process and takes place within 10-15s. The 

photoexcited electron at higher energetic states relaxes back to the lowest 

excited energy state. This relaxation occurs within 10-12-10-10 s [82]. The donor 

in the absence of the acceptor completes the process by recombination of the 

electron-hole pairs (red dashed lines). If this is a radiative recombination, the 

emission takes place in 10-10-10-7 s. When there is an acceptor QD in close 

proximity of a donor QD, there is a Coulombic interaction between the donor 

and the acceptor (represented by the black dashed line) due to the transient 

dipole moment and there is a probability of the energy transfer taking place. 

Satisfying the requirements of FRET, which will be explained in the following 

lines, there emerges a new possible energy transfer channel for the donor, in 

addition to the recombination channel. In the case of FRET, the excitation 

energy is transferred nonradiatively from the donor to the acceptor rather than 

yielding recombination in the donor. Due to the energy transfer, the excitation 
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energy is fed to the acceptor side and contributes to the subsequent 

photoluminescence of the acceptor. The size of the red arrow in the scheme 

depicts the increase in the absorption emission and the size of the green arrow 

shows the decrease in the donor emission as a result of the Förster type energy 

transfer mechanism.  

 

Figure 3.1.1 Diagram showing the possible excitation and de-excitation paths within 

quantum dot pairs. 

3.2 Förster type Nonradiative Energy Transfer 
Mechanism 

 
Förster resonance energy transfer (FRET) mechanism is a nonradiative-type 

energy transfer pathway that occurs between two close resonant molecules. It 

was proposed by Perrin [83

FRET is the transfer of the excitation energy from the donor molecule to the 

acceptor molecule that is in very close proximity. In FRET mechanism, the 

] and Förster was the one after whom the mechanism 

was named, as Förster explained and resolved the discrepancies in the model 

taking into account the spectral bandwidth of the donor and acceptor (see 

Appendix for the derivation of the r-6 dependence of FRET). FRET has been 

used especially in biology as a spectroscopic nanoruler to determine the distance 

between the molecules.  
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excited donor molecule transfers its excitation energy before the energy is 

radiated (in means of a photon emission). Therefore, it should not be confused 

with the radiative energy transfer, where the intermediate photons emitted by the 

donor, is absorbed by the acceptor. For the FRET to occur, the donor emission 

spectra should overlap with the absorption spectra of the acceptor molecule, the 

acceptor (not necessarily emitting) should have a high extinction coefficient, the 

donor should have a high quantum yield, and the donor and acceptor species 

should be in close proximity (typically <10 nm). Förster theory is based on 

dipole-dipole electromagnetic interaction under the long wavelength 

approximation. In cases where the molecules are <1 nm distance apart from 

each, if their wavefunctions start to overlap, the electron migration (not the 

excitation energy transfer) occurs, which was generalized by the Dexter theory. 

This does not happen for our core/shell nanocrystal structures where the 

wavefunction is fully confined. 

 

In order to verify that the energy transfer is Förster like, not only steady state 

fluorescence measurement, but also time resolved spectroscopy is essential. As 

the donor is feeding the acceptor molecule with its excitation energy, the 

mechanism is clearly observed with the change in the lifetime of the donor 

molecule. The lifetime of the donor species decreases, whereas the acceptor 

lifetime increases due to the energy feeding. The commonly used method for 

determining the lifetime of the emitting species is based on the time correlated 

single photon count (TCSPC) method. In this method, the emitting sample of 

interest is excited by a short pulse of the excitation source (laser diode, or light 

emitting diode) and the photons are counted individually one after the other, at 

the end building up an histogram as the data is collected for sufficiently enough 

time period. The method is well understood and mature to be built up on a desk-

top equipment system (see Fig. 3.2.1). 
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Figure 3.2.1 Fluo Time 200 Time Resolved Spectroscopy set-up at the Demir Lab. 

 

The rate of energy transfer in FRET has an 6r− dependence given as  

                                                                    

6
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3.2.1 

 

where kt is the rate of the energy transfer, and τD is the donor lifetime in the 

absence of the acceptor. Here the R0 is given by
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and known as the Förster radius, radius at which the transfer rate and the decay 

rate of the molecule is equally probable, and the FRET efficiency is 50%. 2κ is 

the orientation factor; n is the refractive index of the media; DQ  is the quantum 

efficiency of the donor; and ( )J λ is the overlap integral given by 
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3.2.3 

Here, ( )DI λ  is the normalized emission spectrum of the donor, and ( )Aε λ is the 

spectral extinction coefficient of the acceptor.   

 

Figure 3.2.2 Dependence of the FRET efficiency on r/R0.. 

 

As it is shown in Fig. 3.2.2, FRET is effective in the region where r ≤ R0. As the 

energy transfer takes place, several observations are carried out for the 

investigation. These could be mentioned as the decrease in the donor steady 

state emission spectra and the lifetime shortening, the increase in the acceptor 

emission spectra and the prolonged lifetime. The FRET observations are mostly 

carried over the donor lifetime measurements; in this thesis work, the energy 

transfer for different systems has been verified by different method of 

observations.  
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Chapter 4 
 
Experimental Methods 
 
The methods used in the experiments in the scope of this thesis include 

photoluminescence spectroscopy and photoluminescence excitation 

spectroscopy, absorption spectroscopy, quantum efficiency measurement, time 

resolved photoluminescence spectroscopy, transmission electron microscopy, X-

ray photoelectron spectroscopy, inductively coupled plasma mass spectroscopy, 

thermal gravimetric analysis, quartz crystal microbalance, contact angle 

measurement, and mechanical testing.  

 

4.1 Photoluminescence spectroscopy and 
photoluminescence excitation spectroscopy 
 

Photoluminescence and photoluminescence excitation measurements are 

commonly used to characterize the emission and excitation spectra of the 

samples. Photoluminescence measurements are carried out by setting the 

excitation wavelength and scanning the spectrum in the UV and visible, using 

monochromator equipped systems. In the photoluminescence excitation 

measurement, for a fixed emission wavelength, the excitation wavelength is 

scanned for a determined spectrum. The method determines the excitation 

wavelength appropriate to optically excite the samples. 

 

In-film and in-solution photoluminescence and photoluminescence excitation 

measurements in this thesis are carried out using Varian Cary Eclipse 

Fluorescence Spectrometer and Horiba Yvon Fluorolog 3 system.  
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4.2 Absorption spectroscopy 
 

Absorption measurements are used to investigate the interaction of the incident 

light with the sample. The monochromatic light incident on the sample is 

collected at the detector’s end to obtain the absorbance value at a specific 

photon energy comparing it with the blank sample on the complementary light 

path. Depending on the absorption characteristics of the sample, one can figure 

out the optical characteristics of the sample. In-solution absorption 

measurements allow us to determine the particle concentration of a known 

extinction coefficient or the extinction coefficient of the material with a known 

concentration, using Lambert-Beer Law. In-solution as well as in-film 

measurements are made by the Cary UV-VIS spectrophotometer in this thesis. 

 

4.3 Quantum efficiency measurement 
 

The photoluminescence quantum efficiency (also called the quantum yield) is 

the ratio of the emitted photons per absorbed photons. The calculation of the 

photoluminescence quantum yields for the QDs is subtle, thus a careful 

calculation is needed for the analysis. The quantum yield of an unknown sample 

is 

                                                

2

2
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I A n

=
                                    

4.3 1 

 

Here Q denotes the quantum efficiency; I, the spectrally integrated photon 

count; A, the absorbance value at the excitation wavelength used; and n  is the 

refractive index of the media. " "ref stands for the reference sample. 

 

In order to determine the quantum yield of unknown species, the reference 

sample with a known quantum yield is used for comparison. In our calculations 

of the quantum efficiency, we generally use an organic dye, Rhodamine 6G 
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dissolved in spectroscopic quality ethanol as the reference sample. The reference 

quantum yield of the dye is known to be 0.95 [84

 

]. 

 

In Eqn. 4.3.1, the reabsorption and inner filter effects are not considered. If the 

sample and the reference sample are too concentrated, then the emission spectra 

may be misleading due to the inner filtering effect caused by the strong 

absorption. Apart from that, the excitation wavelength should be chosen 

carefully to prevent wrong analysis of the quantum yield. In our experiments for 

the determination of the quantum yield, the absorption curve of the reference 

dye and QDs are intersected as shown in Fig. 4.3.1. Subsequently, at the 

intersecting wavelength, both the reference dye and QDs are excited as shown in 

Fig. 4.3.1.  

Figure 4.3.1 Emission and absorption spectra of the Rhodamine 6G used for the quantum 

efficiency measurements and the QDs. Black arrow represents the intersection point of the 

absorption spectra for both species, which is used as the excitation wavelength. 

 

The absorbance level used for the spectral intersection point of the sample and 

the reference is chosen to be around 0.1 and the wavelength of this intersection 

of the absorption spectra is adjusted to be around 460-490 nm, where the slope 
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of the absorption of the Rhodamine 6G reference dye is flat [85

4.4 Time resolved photoluminescence 
spectroscopy 

]. Also since the 

dye sample is not emitting in this wavelength regime, the analysis is safe in 

means of the inner filtering effect. Finally, comparing the integrated intensities 

of the reference and the sample, and taking into account the correction for the 

refractive indices, the quantum yield is calculated.    

 

 

Absorption and photoluminescence methods previously described are tools for 

studying the steady state response of the materials, whereas the time resolved 

photoluminescence is a very powerful method for determination of the emission 

kinetics of the sample. Equipped with a pulsed laser diode head, used for the 

excitation of the sample, with a very short pulse width (picosecond), the 

emission through the sample is collected as a function of time. This conveys the 

exponential decay characteristics of the emission dynamics by means of the, so 

called time correlated single photon count (TCSPC) method. Usually, the 

instrument response function (IRF) is also used considered for the deconvolution 

of the decay. The decays are fit with exponential functions to extract the lifetime 

components. The method allows us to determine the lifetimes (with amplitudes) 

of the samples, as well as to comment on the energy transfer mechanisms and 

the lifetime modifications of the samples. Equipped with the He-cryostat in 

close cycle, allowing for temperature dependent emission kinetics measurements 

(up to 10 K), we use Pico Quant Fluotime 200 Time Resolved Fluorescence set-

up with optical components (mirrors, input-output polarizers, monochromator, 

iris, etc.), a high sensitivity detector, and timing electronics. The laser diode is 

operating at 375 nm, with a 80 MHz repetition rate, and a 200 ps width. Data 

acquisition is carried out by Pico Harp 300 system with a lifetime resolution <10 

ps. Data analysis is done by using FluoFit Pro. 
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4.5 Transmission electron microscopy 
 

Transmission electron microscopy (TEM) allows one to obtain an atomic 

resolution image of the sample used. Being equipped with a complex 

electronics, the electron beams of very high energy (10’s-100’s of keV) is 

incident on the sample, and the transmitted electrons are focused by the electron 

lenses. The crystal planes and diffraction patterns can be observed. TEM (FEI, 

Tecnai G2 F30) has been used to determine the size and shape of the 

nanocrystalline samples as well as the crystal interplanar spacing.  

 

4.6 Others 
 
Although measurement techniques described below have not been used 

frequently, they have also been utilized in this thesis and included in this 

subsection. 

4.6.1 X-ray photoelectron spectroscopy 

X-ray photoelectron spectroscopy, known as XPS, is a method to determine the 

elemental composition of the surface of the sample based on the photoelectric 

effect. Highly energetic X-ray photons incident on the sample eject electrons 

from the surface. Binding energy of the ejected electrons can be measured using 

the energy conservation. The binding energy of the electrons, specific to the 

element, allows the determination of the composition, as well as the 

stochiometry of the elements within the sample. The measurement is carried out 

under high vacuum conditions. The method also allows for depth analysis using 

the ion beam etching of the sample. XPS (Thermo, K-Alpha high-resolution 

XPS) is used to study the elemental compositions of the films of nanocrystals 

within a host matrix. 
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4.6.2 Inductively coupled plasma mass spectroscopy 

Inductively coupled plasma mass spectroscopy (ICP-MS) allows for determining 

the trace of the elements in solution with ppt (parts per trillion) sensitivity. The 

Ar plasma decomposes the sample in dispersion to its elemental composition. 

Using the difference of the masses of the elements under consideration, the 

equipment allows to determine the exact amount of material within the sample 

and compare it with the known elemental amount of a control sample. ICP-MS 

(Thermo Fisher X Series 02) is used for determining the stochiometry of the 

alloyed nanocrystal structures.   

4.6.3 Thermal gravimetric analysis 

Thermal gravimetric analysis (TGA) is used for determining the weight loss by 

controlled heating of the sample up to 900 oC. Different elements in a 

compound, e.g., in a powder form, can be investigated by burning the sample 

under controled conditions. The implementation of the change in mass with 

respect to the temperature allows to determine the mass ratio of the sample 

contents. TGA (TA Instruments, TGA Q500) is used for the determination of the 

ligand content within the nanocrystals. 

4.6.4 Quartz crystal microbalance 

The equipment is used for accurate determination of the mass accumulation on 

the substrate of the quartz crystal by the measurement of the change in the 

oscillation frequency of the quartz crystal resonator. The method is very 

powerful for the verification of the monolayer films. Qsence QCM is used in 

this thesis, for the verification of the binding of the proteins to the nanocrystals.  

4.6.5 Contact angle measurement 

This technique is used to determine the surface hydrophobicity of the sample. 

This method allows us to characterize the surface, whether it is hydrophobic or 
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hydrophillic. The angle at which the nanocrystal-polymer surface makes with 

the water drop is measured with Dataphysics, OCA 15-EC. 

4.6.6 Mechanical testing 

Mechanical testing is a tool for characterization of the sample mechanically, by 

applying a load on the regular shaped sample. By controlled stretching of the 

material under consideration, the stiffness and elasticity information can be 

obtained. The characterization tool (Instron 5969 MTS) is used for determining 

the tensile strength of the nanocrystal-polymer films. 
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Chapter 5 
 

Exciton harvesting of nanocrystal 
quantum dots for green fluorescent 
proteins 

 

This chapter is based in part on the paper work of “Exciton harvesting of 

nanocrystal quantum dots for green fluorescent proteins,” by Evren Mutlugun, 

Urartu Ozgur Safak Seker, Pedro Ludwig Hernandez Martinez, and Hilmi 

Volkan Demir, in submission (2011). 

5.1 Introduction 
 
Green fluorescent protein (GFP) is found in a marine organism, Aequorea 

Victoria, known as the jelly fish [86]. In nature, the emission of the GFP at 508 

nm takes place, when another protein aequorin interacts with Ca2+ ions and 

emits at 440 nm, which consequently excites GFP [87,88

The use of FRET involving fluorescent proteins with QDs have been studied for 

biotargeting and biosensing purposes thus far [

]. Here we extensively 

study a synthetic approach to mimic the excitation/emission process of GFP-

aequorin pair where the aequorin protein was replaced with ZnCdSe QDs which 

has a longer lifetime compared to that of aequorin. Mediating the energy transfer 

mechanism between the QDs and the fluorescent proteins, we achieve light 

harvesting for the GFP up to 15 folds, by overcoming the narrow excitation 

window of the GFP, together with high levels of lifetime modifications. The 

synthetic composite of ZnCdSe GFP-QD (which will be called “GFP-QD” 

further on in the chapter) is subsequently utilized for biosensing applications.  

 

89,90]. However, in the context 
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of this chapter, we propose the light harvesting of the QD-GFP in a complex for 

light harvesting applications mediated by FRET mechanism together with the 

demonstration of the enzymatic reaction for controlling the binding of the 

donor-acceptor pair. 

5.2 Results and Discussion  
 
Within the context of this approach, we followed a route where we started from 

the basics of the composite formation to the FRET facilitating QD-GFP system. 

Fig. 5.2.1 shows the emission spectrum of the donor ZnCdSe QDs and the 

absorption spectrum of the GFP showing that the donor photoluminescence 

matches well with the absorption of the protein to provide an efficient FRET 

pair. 

 

 

Figure 5.2.1 Donor ZnCdSe QDs emission and acceptor GFP absorption spectra at room 

temperature.   
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The synthesis of the QDs is described in the literature [91

3
unitcellV a=

] . The high resolution 

TEM image in Fig. 5.2.2 shows the interplanar distance between the atomic 

planes of the ZnCdSe QDs (scale bar is 2 nm). Since the material is known to 

reveal cubic structure the unit cell volume is given by Eqn. 5.2.1. The 

interplanar distance is measured to be 0.31nm for the QDs used. The exctinction 

coefficient is measured experimentally to be ~75,000 M-1 cm-1. 

 

                                                                                                        5.2.1 

 

Using the size information from the TEM image (see Fig. 5.2.2), one can 

determine the volume of 1 QD, considering the dots to be spherical, thus given 

by Eqn. 5.2.2. Therefore the ratio of the volume of the QD to the volume of the 

unit cell gives us the information on how many unit cells is roughly present in 

one QD. 

 

 

                                                         
34

3dotV rπ=
                                            

5.2.2 

 

 

Figure 5.2.2 High resolution TEM image of the ZnCdSe QDs. 

 

 

If the density of the crystal structure is known, then the mass of the QD in the 

dispersion of a known volume can be extracted. However, since ZnCdSe is an 
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alloy structure, here we determine the stochiometric ratios of the Zn:Cd:Se using 

the inductively coupled plasma-mass spectroscopy (ICP-MS). As the experiment 

is carried out, we find the crystal to be Zn0.94Cd0.06Se.  We can calculate the 

alloyed QD density by using the weighted densities of the ZnSe and CdSe. The 

important issue to be addressed here is that the QDs are not only consisting of 

the atoms building them up, but also there are organic ligands attached to them 

which make them stable in dispersion. Therefore, a careful analysis needs to be 

implemented to determine how much of the mass is consisting of the pure 

elemental constitutents itself. To do that, thermo graviometric analysis (TGA) is 

used to obtain the mass percentage of the elements of the QDs forming the QDs. 

Once we have the pure mass of the dispersion of known volume, we calculate 

the concentration of the QDs in the dispersion. 

 

Although the ultimate aim is to build a functioning FRET facilitating QD-GFP 

system, we start with the study of the binding of GFP to QDs to form the 

composite structure. The affinity of the GFP to ZnCdSe is tested using quartz 

crystals microbalance (QCM). In this test, first the surface of the QCM crystal is 

decorated. This has been done by the surface functionalization with csyteamine, 

where the –SH group of the molecule is covalently bound to the gold surface of 

QCM sensor. The other end of the cysteamine contains NH2 group, which can 

be coupled to the carboxyl groups existing on the ZnCdSe QDs. This coupling is 

achieved using the 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) as 

the activation agent, which provides the immobilization of nanoparticles on gold 

surface. Following the immobilization of the QDs, GFP is delivered onto the 

surface immobilized QDs using a peristaltic pump at a flow rate of 2.5 µL/min. 

To observe the interaction of GFP with the surface immobilized dots, a 

concentration dependent strategy is followed to extract the kinetic adsorption 

constant of the GFP to the QD surface. The absorption of the GFP on QDs is 

monitored between 2-10 µM concentration range. (Fig. 5.2.3) After pumping 

each concentration, the weakly bound and non-specifically bound GFP 
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molecules is removed, with an extensive washing step with using the buffer 

solution to satisfy the specific binding of GFP on QD surface.  

 

Figure 5.2.3 Adsorption isotherms of GFP on QD modified surface of QCM sensor. 

 

The binding experiments from QCM is fit using the simple Langmuir model 

[92

max

D

f Cf
K C

×
∆ =

+

] to calculate the affinity constant of the GFP bound to QDs. The model is 

given by Eqn. 5.2.3. 

                                                                                                     
5.2.3 

 

Here, f∆ denotes the frequency shift as the protein is adsorbed, maxf is the 

maximum frequency, which corresponds to the saturation frequency due to 

adsorption, C is the corresponding protein concentration, and DK is the constant 

of the binding affinity. 

 

The frequency change in the QCM signal is taken after the adsorption of the 

each delivery of the protein at a certain concentration on the immobilized dot 

QD adsorption 

GFP adsorption 
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surface as shown in Fig. 5.2.3. Each shift upon GFP adsorption is plotted as a 

function of GFP concentration. Using the single Langmuir adsorption model, we 

calculate the affinity constant for the binding of the GFP. The equilibrium 

binding constant for GFP is found to be 66.9 1.2 10± × M-1. Compared to the 

binding information of peptides and proteins on solid surfaces, the affinity of the 

GFP to dot surface is satisfactory and comparable with the affinity of the most 

of the thiol based linkers to solid surfaces [93

 

]. The adsorption isotherm and the 

fitted single Langmuir model curve are given in Fig. 5.2.4.  The results indicate 

that GFP is capable of binding to the surface bound ZnCdSe QDs, which means 

that the functioning of GFP is good enough to build a composite assembly of 

QD-GFP. 

Figure 5.2.4 Single Langmuir adsorption model fit to the adsorption data of his-tagged 

GFP on surface bound QD. The red line represents the fit as the black dots denote the data 

points. 

 
In order to verify the formation of the nanobiocomposite, another tool is utilized 

to test the composite material based on a thermal method, namely the 

thermogravimetric analysis (TGA). In this approach, we track the change in the 
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mass of the nanocomposite as a function of temperature. As given in Fig. 5.2.4, 

increasing the temperature from 50 to 550 oC and monitoring the decomposition 

of GFP bound around the QD, we observe three different peak points. Each of 

the peak points represents the decomposition of different groups within the QD-

GFP composite (see Fig. 5.2.5). 

 

Figure 5.2.5 Mass change monitored in TGA and the derivative of mass change as a 

function of temperature for the nanocomposite. 

 

Compared to TGA of the QDs alone (Fig. 5.2.6), there is a shift in the peaks of 

the QD decomposition points, which is due to the formation of the 

nanocomposite triggered upon a strong interaction between the QD and GFP.  
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Figure 5.2.6 Comparison of the temperature derivative mass change data for QD and QD-

GFP composite material. The shift in QD peaks and emergence of new peaks suggest the 

formation of new composite material. 

 

Having proved that the system is a composite, we worked on the verification of 

the energy transfer among the QD-protein complex. In order to study the energy 

transfer mediated light harvesting, we have performed steady state and time 

resolved photoluminescence measurements. The steady state measurements 

demonstrate the effect of the energy transfer from the QDs (D) to GFP (A). As 

the A/D ratio is changed, we observe the decrease in the emission spectra of the 

donor QDs, whereas an increase in the acceptor emission spectra is observed as 

a result of energy feeding from the donor side.  

 

The steady state emission measurements are performed with Cary Fluorometer 

with the excitation monochromator set at 315 nm. To demonstrate the excitation 

of the GFP well beyond its excitation spectra, we choose our excitation 

wavelength to be 315 nm, since the photoluminescence excitation (PLE) 

intensity of the bare GFP is much lower compared to the bare PLE of the donor 

QDs specifically characterized at their individual emission wavelengths. The 
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PLE intensities of the bare GFP and bare QD are given in Fig. 5.2.7 together 

with their ratio. 

 

Figure 5.2.7 PLE intensity ratio of the bare QDs at its emission wavelength of 422 nm 

compared to the bare GFP at its emission wavelength of 508 nm at room temperature. The 

insets show the individual PLE intensities of the GFP and the QD alone. 

 

The photoluminescence measurements of the dot-protein composite are shown 

in Fig. 5.2.8. The control experiments are also performed to check the emission 

of the GFP without donor QDs corresponding to the same acceptor 

concentration which is used in the donor-acceptor hybrid approach (Fig. 5.2.9). 

In the control group, due to the increase in the acceptor concentration in 

solution, the bare GFP intensity also increases. However, the intensity increase 

of the GFP in the presence of donor QDs is much higher as a result of the 

nonradiative energy transfer.   
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Figure 5.2.8 Change in photoluminescence of the donor-acceptor QD-GFP system with 

changing A/D concentration ratio (excitation at 315 nm) at room temperature. 

 

Figure 5.2.9 Control experiments for the photoluminescence of acceptor GFP only with the 

same acceptor concentration, corresponding to the A/D concentration ratio (excitation at 

315 nm) at room temperature. 

 

The enhancement of the bare acceptor emission is extracted from the steady 

state emission data of the GFP in the presence and absence of the donor QDs. 

The results are also shown in Fig. 5.2.10. 
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The enhancement of the acceptor emission is calculated through  
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5.2.4 

 

Here, AI is the intensity of the acceptor GFP in the absence of the donor QDs 

and D
AI  is the intensity of the acceptor in the presence of donor. The wavelength 

interval from 480 to 620 nm is chosen since the emission spectra of the GFP lies 

within this region. Carrying out the analysis, we observe the enhancement of the 

acceptor photoluminescence up to 15 folds corresponding to the A/D ratio of ~4, 

which is in good agreement with the geometry given in Fig. 5.2.16. As the 

amount of GFP is further increased, the overall enhancement decreases, because 

the system is approaching to the case of acceptor only, when A/D is increased 

further. 

 

Figure 5.2.10 Enhancement of the GFP photoluminescence using QDs when excited with 

315 nm monochromatic light at room temperature. 

To verify the energy transfer, we also perform time resolved photoluminescence 

measurements both at the donor and acceptor emission wavelengths, at 422 and 

508 nm, respectively. As changing the concentration of the GFP to QDs, namely 
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the acceptor/donor concentration ratio, we observe a drastic change in the 

lifetime of the donor QDs. The experiment was performed using the Pico Quant 

Time resolved fluorescence set-up. Starting with the A/D concentration ratio of 

0.96, we observe the photoluminescence decays getting faster with increasing 

A/D ratio (see Fig. 5.2.11) 

 

Figure 5.2.11 Time resolved photoluminescence decays of the donor changing with A/D at 

room temperature. 

 

Here the double exponential fits were used for the observed experimental 

decays. The lifetime of the donor changes from 10.33 to 2.91 ns as we increase 

the A/D concentration ratio (Fig. 5.2.12). The change in the lifetime of the donor 

species in the presence of the acceptor in solution implies the nonradiative type 

energy transfer.   
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Figure 5.2.12 Donor lifetimes, extracted from time resolved photoluminescence decays, and 

theoretically predicted, as a function of A/D at room temperature. 

 
In a similar fashion, we also carry out the lifetime measurements from the 

acceptor side (Fig. 5.2.13). This time, due to the energy feeding from the donor 

to the acceptor, the acceptor lifetime increases in the presence of donor QDs. 

For all the different values of A/D studied, we observe an increase in the 

lifetime values of the acceptor from 3.11 to 4.67 ns for the GFP (Fig. 5.2.14). 
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Figure 5.2.13 Time resolved photoluminescence decays of the acceptor changing with A/D 

at room temperature.  

  

 

Figure 5.2.14 Acceptor lifetimes, extracted from time resolved photoluminescence decays, 

as a function of A/D at room temperature. 
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The observed FRET efficiencies due to the dipolar interaction of the donor 

acceptor pairs is calculated using Eqn. 5.2.5. 

 

                                                      
1 DA

D

τη
τ

= −
                                                  

5.2.5 

 

where DAτ  is the lifetime of the donor in the presence of the acceptor and Dτ is 

the bare lifetime of the donor. We observe up to 70% FRET efficiencies for our 

QD-GFP complex (see Fig.5.2.15). In connection with the theoretical model 

based on the dipole-dipole interaction, the efficiency levels are in good 

agreement with the experimentally observed values.   

 

Figure 5.2.15 Theoretical and experimental FRET efficiencies extracted from lifetime 

measurements at room temperature. 

 

In the theoretical approach, we consider energy transfer from ZnCdSe QD to 

multiple GFP molecules under exciton-exciton interaction. Within the simplest 

rate model, the number of excitons ( )excN  trapped in the QD, under constant 

illumination (steady-state condition), is given by 
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                                             ( ) 0D tot D
exc trans exc DN Iγ γ− + + =

                                 
5.2.6 

 

where D
excN  is the number of donor excitons, DI  is the exciton generation rate due 

to the light excitation, and , ,
D D D
exc exc rad exc non radγ γ γ −= +  is donor exciton 

recombination rate in the absence of acceptor. ,
D
exc radγ  and ,

D
exc non radγ −  are the 

radiative and nonradiative component of D
excγ . tot

trans transnγ γ=  is the total energy 

transfer rate between the donor and multiple acceptors. n   is the number of 

acceptor and transγ  is the energy transfer between one donor and one acceptor. 

By substituting tot
transγ  into Eqn. 5.2.6, it can be written as 

 

                                              ( ) 0D D
exc trans exc Dn N Iγ γ− + + =

                            
5.2.7 

 
 

One defines 
 

                                                      ( )D D
DA exc transnγ γ γ= +

                                   
5.2.8 

 
 

where D
DAγ  is the donor exciton lifetime in the presence of energy transfer. For 

the energy transfer rate between ZnCdSe QD and GFP, we assume to be Förster-

type 
6

0
trans D

R
r

γ γ  =  
 

, where 0R  is the Förster radius for the D-A pair and r  is 

the separation distance between ZnCdSe QD and GFP. (This assumption is 

reasonable because the energy transfer between spherical QDs is well described 

by the Förster theory [94

6
01D D

DA exc
Rn
r

γ γ
  = +     

]). Therefore Eqn. 5.2.8 is given as Eqn. 5.2.9 

 

                                                                                    
5.2.9 

 
In terms of lifetimes, 



56 
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5.2.10 

 
Here we have considered the distance between the QD-GFP to be 5.49 nm in 

average, using the semi empirical approach, which is reasonable when compared 

with the QD diameter of 3.72 nm and GFP size.  

 
Figure 5.2.16 Schematic representation for the energy transfer from QD to GFP (not 

drawn to scale). Picture shows a QD surrounded by a GFP molecule. “d” represents the 

average separation distance between the QD and the GFP over which energy transfer takes 

place. Inset: Dimensions for the GFP molecule [95]. 

 

The enhancement in the FRET efficiencies does not reflect the observed light 

harvesting enhancement. This is because, as more and more acceptors are 

introduced, there are more nonradiative channels created for the donor to 

transfer energy, which results in high FRET efficiencies. On the other hand, the 

light harvesting is optimal up to a certain level of acceptor per donor amount. 

When A/D is increased further, the amount of light harvesting is decreased, 

since the system is evolving towards an acceptor only system. 
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QD-GFP nanocomposite was further used as a biosensor to detect a protease 

activity in a given biological medium. In the context of out biosensing 

applications we aimed to detect trypsin enzyme, which is known as a kind of 

protease to digest protein molecules. Because our composite system was 

composed of a protein-GFP and QD connect via a histag linker, once the linker 

is digested the interactions would be broken and this would result in the 

destruction of the FRET facilitating nanocomposite system. This series of events 

can be tracked by monitoring the change in the lifetime of the nanocomposite 

donor species using a time resolved fluorescence spectroscopy. Upon addition of 

the trypsin with varying concentrations one can monitor the decrease in the 

lifetime of the acceptor molecules which was previously enhanced by the FRET 

process. 

 

Figs. 5.2.17 and 5.2.18 show the effect of the enzyme on the energy transfer 

among the GFP-QD system. As comparing with the bare lifetime of the GFP, 

due to the energy transfer, the lifetime of the GFP increases in the presence of 

the donor QDs. After this point, we introduce enzyme to the solution with a 

known concentration in a controlled way as to separate the QD-GFP complex. 

The experiment is followed in a tedious way activating the enzyme at 37oC and 

allowing enough time for the enzymatic activity to take place. As changing the 

enzyme concentration in solution, we observe that the lifetime of the QD-GFP 

complex follows a trend of decreasing back to the initial GFP  lifetime. This 

enables us to use the enzymatic activity to control the distance among the donor-

acceptor pair and thus control the FRET efficiency. 
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Figure 5.2.17 Room temperature photoluminescence decays of the GFP only, GFP after 

FRET, and GFP after FRET with controlled enzyme (activated) addition. 

  

Figure 5.2.18 Lifetime modifications of the GFP only, GFP after FRET, and GFP after 

FRET with enzyme (activated) addition. 
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In the control experiments, where we do not acivate the enzyme but mix them 

with the QD-GFP complex (Fig. 5.2.19 and Fig. 5.2.20), we do not observe a 

significant change, but fluctuations in the photoluminescence decays of the QD-

GFP complex. The control experiments are followed in the same manner except 

for the heat treatment. 

 

Figure 5.2.19 Lifetime modifications of the GFP only, GFP after FRET, and GFP after 

FRET with enzyme (unactivated) addition. 

 

Figure 5.2.20 Room temperature photoluminescence decays of the GFP only, GFP after 

FRET, and GFP after FRET with enzyme (unactivated) addition. 
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5.3 Summary 
 

In summary, in this chapter we have shown the composite structures of GFP-QD 

complexes. The FRET mediated light harvesting results in up to 15 fold 

enhancement in the emission of the acceptor protein. The lifetime modifications 

of the donor and acceptor pair has been demonstrated with the theoretical 

analysis based on dipole-dipole interaction. Furthermore, the trypsin enzyme is 

implemented for controlling the energy transfer, breaking the bond in between 

the dot and protein, among the donor-acceptor pairs, as a new potential tool 

sensing protease activity. 
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Chapter 6 
 

Excitonic energy transfer from 
charged quantum dots to organic dye 
molecules  
 

 

This chapter is based in part on the publication “Highly efficient nonradiative 

energy transfer using charged CdSe/ZnS nanocrystals for light harvesting in 

solution,” Evren Mutlugün, Sedat Nizamoğlu, and Hilmi Volkan Demir, 

Applied Physics Letters 95, 033106 (2009). Reproduced (or ‘Reproduced in 

part’) with permission from American Institute of Physics. Copyright 2009 

American Institute of Physics. 

 

6.1 Introduction  
 

 

In this chapter we present highly efficient nonradiative Förster resonance energy 

transfer (FRET) facilitiated by the use of positively-charged CdSe/ZnS core-

shell nanocrystal quantum dots (QDs) for light harvesting in solution. With 

rhodamine B (RhB) dye molecules used as the acceptors, our time-resolved 

photoluminescence measurements show substantial lifetime modifications of 

these amine-functionalized QD donors from 18.16 to 1.88 ns with FRET 

efficiencies >90% in solution. These strong modifications allow for light 

harvesting beyond the absorption spectral range of the acceptor dye molecules.  

As also has been discussed in Chapter 1, organic dyes are widely used in 

biolabeling as staining molecules [96,97,98] thanks to their high efficiency and 
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stability. They are also used in optoelectronics (e.g., dye based lasers 

[99,100,101

In literature, CdTe based QDs as donors, together with various dyes used as 

acceptors, have been reported to demonstrate FRET [

]). However, these dye molecules are intrinsically limited in their 

optical absorption spectral ranges in general. For example, rhodamine B, which 

is one of the most commonly used dyes, suffers from a characteristically narrow 

absorption spectrum, typically 450 to 600 nm. Beyond this limited range, it is 

impossible for RhB to be optically excited efficiently. In various applications, 

this severely limits the possible spectral range for optically pumping these dyes. 

For instance, in bioimaging, this prevents the use of dyes in spectral 

multiplexing, where multiple agents of different colors are used to label different 

biological targets to be simultaneously excited by a single optical pump [6]. To 

address these problems, we propose and demonstrate optical excitation of  RhB 

dye molecules in solution based on strong nonradiative Förster resonance energy 

transfer, enabled with the use of light-harvesting, positively-charged CdSe/ZnS 

QDs at optical pump wavelengths well below the characteristic absorption 

spectral range of RhB. This effectively extends the absorption spectral range of 

RhB acceptor dye molecules in the presence of CdSe/ZnS donor QDs towards 

shorter wavelengths.  

 

102,103,104]. 

Furthermore, CdSe/ZnS QD donors have previously been used for energy 

transfer to various protein based acceptors [105,106,107]. Additionally, FRET 

using CdS dots have been investigated [108,109]. In these studies, it has been 

found that FRET efficiencies are typically not high (below 60%) in solution. 

CdTe and CdSe/ZnS dots of different sizes have further been studied for energy 

transfer in film [55,110]. Recently Mayilo et. al discussed the use of Ca2+ 

binding to enhance FRET between different sized CdTe nanocrystals in solution 

[111]. These reports have thus far shown different flavors of semiconductor 

nanocrystals employed for energy transfer to fluorescent molecules. However, 

the use of electrostatic interaction between charged QDs and dye molecules in 

solution for the enhancement of FRET has not been investigated to date. To this 



63 
 

end, the control and tuning of FRET efficiencies and lifetime modifications have 

also not been studied for electrostatically interacting light-harvesting QD-dye 

pairs thus far. 

 

6.2 Results and discussion 
 

In this thesis work, using positively-charged amine-functionalized CdSe/ZnS 

QDs, we present highly efficient FRET-based light harvesting for RhB dye 

molecules in solution beyond their absorption range, with their FRET 

efficiencies and lifetime modifications carefully tuned and precisely controlled 

with QD-dye concentrations. For this purpose, we choose the emission 

wavelength of our CdSe/ZnS QD donors (around 541 nm) to match well with 

the absorption range of RhB dye acceptors, while these donor QDs provide a 

very broad absorption band extending towards short wavelengths (with an 

absorption band edge of 520 nm).  

 

We find out that the pH of acceptor RhB dyes in aqueous solutions becomes 

slightly acidic (varying from 6.7 to 6.2) as the concentration of RhB is increased 

(in the µM range for our experiments).  Relying on this observation, to help the 

donor and acceptor molecules find each other and thus get in close proximity in 

the solution, especially at lower concentrations, we employ amine-

functionalized nanocrystals that are positively charged. These nanocrystals 

electrostatically interact with the RhB acceptor molecules that are slightly 

negatively charged in the acidic solution. We experimentally demonstrate 

significant lifetime modifications of these QDs from 18.16 to 1.88 ns with FRET 

efficiencies of >90% in solution. By repeating the same experiments using 

neutral non-functionalized CdSe/ZnS QDs, we show the effect of donor QD 

charge on the efficiency of FRET as a function of the acceptor to donor (A/D) 

concentration ratio.  
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Fig. 6.2.1(a) presents the time-resolved photoluminescence (TRPL) of amine-

functionalized CdSe/ZnS nanocrystal donors (AF/NC-Ds) together with RhB 

acceptors (RhB-As) at the donor emission wavelength (541 nm), parameterized 

with respect to the varied acceptor to donor (A/D) concentration ratio (shown in 

the figure legend). In this set of experiments, as both the donor nanocrystals and 

the acceptor dyes are water-soluble, the acceptor molecules are carefully added 

to the initially prepared aqueous donor solution in controlled increments. These 

TRPL measurements are taken at room temperature with PicoQuant 200 Flou 

Time time-resolved spectroscopy system using an excitation laser source at a 

pump wavelength of 375 nm.  The photon decay lifetimes are calculated by the 

software package of PicoQuant (FluoFit) using exponential fittings with χ2 error 

close to unity. In these TRPL experiments, we observe that the intensity 

weighted lifetime iτ of AF/NC-Ds is decreased from 18.16 ns to 1.88 ns as the 

concentration of RhB acceptors (thus, the A/D ratio) is increased.  These 

significant modifications observed in the donor photon lifetimes are attributed to 

the nonradiative energy transfer enhancing in increments from the donor 

molecules to the acceptor molecules with the incrementally increasing A/D 

ratio.  

 

Fig. 6.2.1(b) depicts the decay curves of the same TRPL experiments of Figs. 

6.2.1(a) at the same A/D ratios, the only difference being the use of non-

functionalized CdSe/ZnS nanocrystal donors (NF/NC-Ds) in the solution. In this 

set of TRPL experiments, we observe the same trend of modifications in 

emission kinetics of the donor QDs similar to the previous set. As a result of 

FRET, the donor photon lifetime is decreased in the presence of acceptors. Here 

it is important to note that ZnS shells that surround CdSe cores and serve as a 

potential barrier in our nanocrystal structure provides full electronic isolation 

and prevents tunneling of the confined electron and hole wavefunctions. 

Therefore, this modification observed in emission kintetics cannot be due to 

Dexter-type charge transfer. 
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We also investigate the steady-state photoluminescence (SSPL) of RhB dyes in 

the presence of amine-functionalized CdSe/ZnS nanocrystals (AF/NC-Ds + 

RhB-As) and of non-functionalized CdSe/ZnS nanocrystals (NF/NC-Ds + RhB-

As) as a function of A/D ratio, using Cary 100 Fluorometer at a fixed excitation 

wavelength of 375 nm, the same as that of the excitation source used in TRPL 

experiments. For each type of QDs, these SSPL experiments are carried over a 

set of thirty-one samples with varying A/D ratios. For (AF/NC-Ds + RhB-As) 

and (NF/NC-Ds + RhB-As), Figs. 6.2.1(c) and 6.2.1(d) show the respective 

evolution of the photoluminescence spectra of the donor and acceptor molecules 

changing their A/D concentration ratio in solution. As a result of FRET, we 

observe that the donor emission is quenched and the acceptor emission is 

enhanced incrementally as the acceptor-to-donor concentration ratio is 

increased.  
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Figure 6.2.1 Room-temperature time-resolved photoluminescence (TRPL) of amine-

functionalized CdSe/ZnS nanocrystal donors (AF/NC-Ds) together with RhB acceptors 

(RhB-As) (a) at the donor emission wavelength (at 541 nm) and (b) TRPL of non-

functionalized CdSe/ZnS nanocrystal donors (NF/NC-Ds) together with RhB acceptors 

(RhB-As) at 541 nm. Room-temperature steady-state photoluminescence (SSPL) of (c) 

AF/NC-Ds + RhB-As and (d) NF/NC-Ds + RhB-As. All of the TRPL and SSPL 

measurements are presented as parameterized with respect to the varied concentration 

ratios of A/D. (e) FRET efficiency levels (extracted from TRPL) and (f) enhancement 

factor of acceptor emission with respect to the case of acceptors alone (with no donors), 

both as a function of A/D ratios.  
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Table 6.2.1 summarizes the results of the time-resolved spectroscopy analyses 

including the donor photon lifetimes along with their χ2 error and the FRET 

efficiencies calculated from TRPL. Table 6.2.1 also presents the experimentally-

measured quantum yields of our amine-functionalized and non-functionalized 

CdSe/ZnS QDs in solution as well as the theoretically-calculated Förster radii of 

these QD donors for RhB acceptors. Here the Förster radius, 0R , the distance at 

which FRET is halved, is calculated using Eqn. 3.2.2 and, The FRET efficiency 

level is calculated from TRPL using Eqn. 3.2.3. The quantum yield of AF/NC-

Ds is measured to be 29.5% whereas that of NF/NC-Ds is found to be 33.0%. 

Both of them have a calculated Förster radius of ca. 0.56 nm. 

 

 

Table 6.2.1 List of quantum yields, Förster radii, average decay lifetimes and their χ2 error 

limits at the donor emission wavelength, and FRET efficiencies, all for different 

concentration ratios of A/D when using amine- and non-functionalized CdSe/ZnS 

nanocrystal donors. All experiments were conducted at room temperature here.  

 

L 

A 

B 

E 

L 

 

 

 

Concentration 

ratio 

 

Using amine-functionalized donors Using non-functionalized donors 

Quantum yield Förster radius Quantum yield Förster radius 

29.5% 5.6 nm 33.5% 5.6 nm 

Lifetime analysis Lifetime analysis 

A/D τi χ2 ηFRET τi χ2 ηFRET 

a 0.00 18.16 1.09 - 16.65 1.08 - 

b 1.03 15.79 1.15 37 15.83 1.08 9 

c 3.34 15.44 1.14 38 13.97 1.15 28 

d 5.90 11.49 1.22 71 12.29 1.22 42 

e 8.98 8.94 1.24 80 10.45 1.26 56 

f 13.09 6.32 1.31 86 8.67 1.28 65 

g 17.20 3.99 1.27 89 7.88 1.31 68 

h 21.30 2.87 1.26 91 6.47 1.38 75 

i 25.41 2.51 1.25 92 5.88 1.39 79 

j 29.52 2.13 1.23 93 5.13 1.26 79 

k 37.73 1.94 1.14 94 4.52 1.32 83 

l 45.94 1.88 1.20 94 3.82 1.32 86 
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The analysis of TRPL experiments shows that the efficiency level of FRET from 

the QD donors to the dye acceptors is increased from 37% to 94% when using 

positively charged amine-functionalized QDs and from 9% to 86% when using 

neutral non-functionalized QDs, as the A/D concentration ratio is increased, as 

presented in Table 6.2.1 and depicted in Fig. 6.2.1(e). This shows the same trend 

of increasing FRET effiiency level with the increased A/D. In Fig. 6.2.1(e), we 

observe that the amine-functionalized donors converge to a higher level of 

FRET efficiency faster than the non-functionalized donors do. These analyses 

suggest that AF/NC-Ds tend to exhibit higher efficiency (>90%) in light 

harvesting for RhB-As than NF/NC-Ds (although NF/NC-Ds posess a slightly 

higher quantum yield). This enhanced performance of AF/NC-Ds in light-

harvesting is attributed to the electrostatic interaction between AF/NC-Ds and 

RhB-As in solution that possibly keeps them in closer proximity. The Brownian 

motion of the donor and acceptor molecules in the aqueous medium is also 

considered to affect FRET in solution at room temperature to some extent, 

especially for the case of NF/NC-Ds; it is otherwise less likely for these to be in 

close proximity to the acceptor molecules in the solution, given their low 

concentration levels. Also, in the case of using AF/NC-Ds, the screening effects 

are considered to partially prevent close electrostatic interaction and thus reduce 

FRET to some extent. Yet, with all other factors in play, we find out that the net 

effect of the charge of the donor QDs is towards improving Förster resonance 

energy transfer to the acceptor RhB. 

 

To verify the enhanced emission of the acceptor molecules at the specified pump 

wavelength (375 nm) we perform SSPL measurement of RhB in the absence of 

the donor QDs, using exactly the same set of RhB concentrations as in the 

previous experiments. Fig. 6.2.1(f) shows the enhancement factor calculated for 

the acceptor dye emission in the presence of AF/NC-Ds or NF/NC-Ds with 

respect to the case of the acceptor dyes alone. The enhancement factor is found 

to be larger for AF/NC-Ds than NF/NC-Ds at low A/D concentrations, which is 

once again attributed to the electrostatic interactions in the case of (AF/NC-Ds + 
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RhB-As). As the acceptor amount in solution is increased, the enhancement 

decreases (despite increasing FRET efficiency) because the donor-acceptor 

system is evolving towards the case where there are effectively fewer and fewer 

donor molecules per acceptor molecule, thus converging towards the case of the 

dyes alone. On the other hand, increasing the overall emission of the acceptor 

molecules is not feasible at reduced A/D levels since the total emission intensity 

of the acceptors is low in diluted solutions. Given this trade-off, we find out that 

there is a good operating point for the A/D concentration ratio (around 10) in the 

case of AF/NC-Ds where a relatively high total emission can be obtained from 

the acceptor dyes with a good enhancement factor of >4. Far beyond this point, 

adding more and more acceptor molecules into the solution provides a 

diminishing enhancement of the acceptor emissions.  
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6.3 Summary 
 

In summary, we demonstrated highly efficient FRET-based light-harvesting of 

positively-charged CdSe/ZnS core-shell nanocrystals to rhodamine B dye 

molecules in solution by utilizing the electrostatic interaction between them. 

This proof-of-concept demonstration has led to light-harvesting with FRET 

efficiency levels of >90%.  
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Chapter 7 
 

Excitonic energy transfer from water 
soluble quantum dots to organic dye 
molecules  
 

 

This chapter is based in part on the publication “Highly efficient nonradiative 

energy transfer mediated light harvesting in water using aqueous CdTe quantum 

dot antennas,” Evren Mutlugün, Olga Samarskaya, Tuncay Ozel, Neslihan 

Cicek, Nikolai Gaponik, Alexander Eychmüller, and Hilmi Volkan Demir, Optic 

Express 18, 10720-10730 (2010). Reproduced (or ‘Reproduced in part’) with 

permission from Optical Society of America. Copyright 2010 Optical Society of 

America. 

7.1 Introduction 
 

In this chapter, we present light harvesting of aqueous colloidal QDs to 

nonradiatively transfer their excitonic excitation energy efficiently to dye 

molecules in water without requiring ligand exchange. These as-synthesized 

CdTe QDs used as donors to serve as light-harvesting antennas are carefully 

optimized to energetically match the electronic structure of Rhodamine B 

molecules used as acceptors for light harvesting in aqueous medium. By varying 

the acceptor to donor concentration ratio, we measure the light harvesting factor 

with substantial lifetime modifications of these water-soluble QDs, from 25.3 to 

7.2 ns as a result of their energy transfer with efficiency levels up to 86%.  

Not only for the bio-related applications discussed in previous chapters, but also  

the spectral extension of the organic dyes’ optical absorption is important in 
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photovoltaic applications where dyes are used as sensitizers [112]. The dye 

sensitized solar cells require a wide spectral response for an enhanced 

efficiency, but broadening of the absorption spectra of dyes generally 

necessitates complicated chemical modifications [113]. 

 

To address the limiting charactestic properties of the organic dyes, by using 

semiconductor QD nanocrystals, nonradiative Förster-type resonance energy 

transfer can be employed to enable light harvesting at optical wavelengths 

beyond the absorption range of dye molecules, and thus to effectively extend 

their absorption. Such nanocrystals feature high-efficiency, Gaussian-like 

distributed emission along with high tunability of absorption/emission 

characteristics, which make them good candidates as donors for light harvesting, 

as we have shown in our previous work [114]. However, the solubility of such 

donor QDs in aquaeous media is a critical issue to provide biocompatibility and 

enable biological applications [115

Nonradiative transfer of the electronic excitation energy from electronically 

excited donor molecules to optically luminescent acceptor molecules in close 

proximity was first discussed by Theodor Förster in 1948 [

]. To be dissolved in water, the ligand 

exchange of nanocrystals is an alternative, but this comes at a cost of 

significantly decreased quantum efficiency [35]. On the other hand, aqueous 

CdTe QDs provide as-synthesized water solubility and high quantum yield [74], 

and their synthesis has already been studied and well established [74, 75]. For 

these reasons, aqueous CdTe is one of the best candidates as light-harvesting 

antenna in water. However, such light-harvesting as-synthesized aqeuous QDs 

have not been investigated or demonstrated for light harvesting in water to date, 

although this is of ciritical importance for spectrally extended bioimaging and 

biolabeling applications.     

 

116]. Till date FRET 

has been extensively studied in different FRET pairs of dyes and nanocrystals 

for various applications [106,108,109,117,118] (also including CdTe 

nanocrystals [103,104,107,119]). Although these previous reports have 



73 
 

demonstrated FRET mechanism using such a large variety of FRET pairs, light 

harvesting based on FRET using aqueous nanocrystals has not been reported.  In 

the previous work of our group, light harvesting of organic nanocrystals 

synthesized in apolar solvents was investigated; this, however, undesirably came 

at the cost of requiring ligand exchange. Avoiding the need for the ligand 

exchange, the light harvesting factor of as-synthesized aqueous nanocrystals and 

their systematic tuning and control in aqueous medium for light harvesting have 

not been studied.  

 

In this chapter, different than the prior works of our group and the others, we 

propose and demonstrate light harvesting of aqueous colloidal CdTe QDs to 

nonradiatively transfer their excitonic excitation energy efficiently to dye 

molecules in water, and present systematic tuning and control of their light 

harvesting activity in aqueous medium, without the need for ligand exchange. 

We investigated the effects of Förster radius of these aqueous nanocrystals on 

modifying their lifetimes and controlling their light harvesting factor in water. 

We studied the operation of these CdTe nanocrystal donors, serving as optical 

antennas for acceptor Rhodamine B molecules, with their steady state 

photoluminescence spectroscopy and further investigated and analyzed their 

significantly modified photoluminescence decay kinetics for light harvesting 

with their time resolved photoluminescence spectroscopy. With acceptor-to- 

donor concentration ratio varied in water, we controlled the light harvesting 

factor of the donor CdTe QDs, with their substantial lifetime modifications as a 

result of the nonradiative energy transfer with high efficiency levels (up to 

86%). We further analyzed the controlled change in the lifetime of the acceptor 

molecules and investigated the resulting trend of increasing energy transfer 

efficiency versus decreasing light harvesting enhancement of the acceptor 

emission with the increased A/D concentration ratio, discussing the fundamental 

tradeoffs and practical feasibility of FRET assisted light harvesting operation 

with reasonable efficiency and enhancement. 
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7.2 Results and discussion 
 

In this work we colloidally synthesized aqueous CdTe QDs in two different 

sizes to study the effect of Förster radius on the energy transfer efficiency and 

light harvesting activity. Our synthesis procedure follows the method previously 

described in Chapter 2.2.1.1.  

 

Fig. 7.2.1a shows the optical absorption spectra of these differently sized CdTe 

QD donors carefully chosen by size selection, along with that of Rhodamine B 

acceptor molecules in water. Fig. 7.2.1b depicts the photoluminescence spectra 

of these CdTe QDs selectively chosen to emit at the peak emission wavelengths 

of 525 and 552 nm (corresponding to 2.04 and 2.98 nm in size, respectively), 

presented here along with the emission and absorption spectra of the acceptor 

dye molecules alone to show the spectral overlap. Here the absorbance 

measurements were taken using Cary UV-VIS spectrophotometer and the 

photoluminescence measurements were carried out using Cary Eclipse 

fluorescence spectrophotometer. 
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Figure 7.2.2 Room temperature absorbance spectra of the two differently sized aqueous 

CdTe nanocrystal QDs (emitting at 552 and 525 nm) together with that of the Rhodamine 

B dye molecules. (b) Normalized room temperature photoluminescence spectra of our 

aqueous CdTe QDs (donors) selectively chosen to emit at the peak wavelengths of 525 and 

552 nm, along with the emission and absorption spectra of the Rhodamine B molecules 

(acceptors). The donors emitting at 552 nm provide a better spectral match to the 

electronic structure of these acceptors. 

 

Fig. 7.2.1b is used to calculate the spectral overlap integrals )(λJ , which leads 

to 5.5×1015 and 9.2×1015 for the donor QDs emitting at 525 and 552 nm, 

respectively. Subsequently, the quantum efficiencies of the donor molecules are 

experimentally measured to be 10% for 525 nm emitting and 54% for 552 nm 

emitting dots, using Rhodamine 6G as the reference dye. This increase in the 

quantum efficiency is commonly observed for this type of nanocrystals with 

increasing size. Using Eqn. 4.2.2, the Förster radii calculated are =oR 4.7 nm 
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for 525 nm QDs and =oR 6.7 nm for 552 nm QDs.  Based on this observation, 

the QD donors emitting at 552 nm are found to be a better optimized match to 

the acceptor dyes, compared to 525 nm emitting dots. 

To observe FRET, we first performed SSPL measurements (with optical 

excitation at 375 nm) while adding controlled amounts of acceptor molecules 

into the aqueous donor solution, thus changing A/D ratio in increments. Fig. 

7.2.2a presents SSPL spectra for our CdTe QDs emitting at 552 nm used as the 

donors and Fig. 7.2.2b shows the results of the same measurements repeated 

using 525 nm emitting dots as the donors, both starting with the same 

concentration levels and changing A/D concentration ratio in an identical 

manner in water. In this steady state characterization, optical excitation is 

chosen at 375 nm to be consistent with that of the time resolved measurements 

that use a 375 nm laser diode pump. It is worth noting that our donor molecules 

are optically well excited at 375 nm, while this excitation wavelength is out of 

the absorption range of the acceptor molecules (Fig. 7.2.1a). Here the 

concentrations of the donors (without acceptors) and the acceptors (without 

donors) used in Fig. 7.2.1a correspond to the same starting points of Fig. 7.2.2 

before adding the acceptor molecules into the aqueous donor solution. As A/D 

concentration ratio is increased, we clearly observe simultaneously the 

quenching of donor emission and  the enhancement of acceptor emission in 

increments. 

 

To better understand the emission kinetics, we also performed and analyzed 

TRPL measurements, again by adding controlled amounts of acceptors into the 

aqueous donor solution (and changing A/D concentration ratios) in identical 

increments, both for 552 and 525 nm QD donors. TRPL measurements were 

conducted using PicoQuant FluoTime 200 time resolved spectroscopy system 

with a fixed laser diode head at 375 nm wavelength having pulse widths of <70 

ps. Fig. 7.2.3 shows the evolution of photon count decay over time, 

parameterized with respect to the varied A/D concentration ratios, using 552 nm 

emitting QDs (given in Fig. 7.2.3a) and 525 nm emitting ones (given in Fig. 
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7.2.3b) at the corresponding donor emission wavelengths. Each decay curve is 

also shown together with its corresponding numerical triple exponential fits, 

which exhibit good fitting to the experimental data. These measurements and 

numerical analyses are performed at the corresponding peak emission 

wavelengths of the donor nanocrystals since there is an insignificant overlap 

between the donor and acceptor emission spectra at these peak wavelengths 

(Fig. 7.2.1b), which makes the analysis safe (with no detectable crosstalk 

between the emission of donor and acceptor molecules). The comparison of their 

donor photoluminescence decay lifetimes is also presented as a function of A/D 

concentration ratio in Fig. 7.2.3c. Here we clearly observe increasingly faster 

photoluminescence decay of the donors. We also see that the donor lifetimes 

diverge away more from the starting baseline of only donors and are shortened 

further more for 552 nm emitting QDs (with its lifetimes modified from 25.3 to 

7.2 ns) than those of 525 nm dots (with its lifetimes modified from 20.4 to 7.1 

ns). This is because 552 nm emitting CdTe QDs are better optimized to match 

Rhodomine dye molecules and thus serve as better light-harvesting antennas to 

these dyes.   
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Figure 7.2.3 SSPL spectra taken at room temperature by adding controlled amounts of dye 

acceptors into the aqueous donor solution using CdTe QDs emitting at the peak 

wavelength of (a) 552 nm and (b) 525 nm. The legends show the corresponding A/D 

concentration ratios (A/D=1.8–152.8). (Note that these PL intensity levels are measured 

using the same arbitrary units and that they are presented using the scales as indicated on 

their plots, for clear visibility.) 
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Figure 7.2.4 TRPL measurements of donor molecules taken at room temperature by 

adding controlled amounts of dye acceptors into the aqueous donor solution, using CdTe 

QDs emitting at the peak wavelength of (a) 552 nm and (b) 525 nm, all shown together with 

their corresponding numerical fits, and along with a comparative analysis of the donor 

photoluminescence decay lifetimes both for 552 and 525 nm emitting dots as a function of 

A/D concentration ratio (c). In the last plot, the red (black) dotted baseline represents the 

lifetime of only donors of 552 nm (525 nm) emitting dots, without any acceptors in the 

mixture.  

 
Furthermore, we also performed TRPL characterization and analyses at the 

acceptor emission wavelengths. The peak emission wavelength of the acceptor 

is 581 nm, where there is a weak tail component of the donor emission. 

Therefore, in addition to the peak wavelength 581 nm, we performed all of the 

measurements and lifetime analyses also at 605 nm where there is no detectable 

donor emission, for safe comparison. This allowed us to make sure the effect of 

this tail overlap of the donor at 581 nm is insignificant. The evolution of photon 

count lifetimes at 581 and 605 nm are given as a function of time together with 

their numerical fits for 552 nm emitting QDs in Fig. 7.2.4a and for 525 nm 

emitting QDs in Fig. 7.2.4b. Both of their comparative lifetime analyses are 

given in Figs 7.2.4c and 7.2.4d. Due to the energy feeding as a result of FRET 
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process, we see that the acceptor photoluminescence decay lifetimes are 

increased compared to the baseline of only acceptors, which is consistent with 

the previous literature [120,121

2
int /i i i i

i i
A Aτ τ τ= ∑ ∑

]. Using 552 nm emiting donors, we observe the 

lifetime of the acceptor molecule increases from 1.68 to 23.24 ns. As a function 

of the increasing A/D concentration ratio, since the rate of the enhancement on 

the emission of acceptor molecule decreases for a larger A/D (Fig. 7.2.4c), the 

modifed lifetimes also converge towards the baseline. Regardless of the analyses 

conducted at either of the wavelengths (581 or 605 nm), we observe the same 

trend of the acceptor lifetime modifications, again with a stronger modification 

for the better optimized light-harvesting 552 nm emitting CdTe QDs in these 

experiments. All of the lifetime analysis results are also listed in Table 7.2.1-7 

along with their amplitudes Ai and χ2 , chi-square values. The intensity weighted 

lifetime, τ int is calculated using Eqn. 7.2.1 

                               

                                    
7.2.1 

 

whereas the amplitude wighted lifetime, τ amp is calculated using Eqn. 7.2.2 

 

                                                  
/amp i i i

i i
A Aτ τ= ∑ ∑

                                   
7.2.2 
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Figure 7.2.5 TRPL measurements of acceptor molecules at room temperature while 

varying the A/D concentration ratio, shown along with their numerical fits using (a) 552 

nm and (b) 525 nm emitting QDs and comparative analysis of the acceptor 

photoluminescence decay lifetimes for emission (c) at 581 nm (acceptor peak with a weak 

donor tail) and (d) at 605 nm (strong acceptor tail with no donor tail) as a function of A/D 

concentration ratios. In both plots (c) and (d), the dashed baseline represents the lifetime of 

only acceptors without any donors.  
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Table 7.2.1 TRPL measurement analysis of the 525 nm emitting donors at 525 nm varying 

the A/D concentration ratio.  

 
 

TRPL analysis of 525 nm emitting dots at 581 nm with respect to changing A/D 
A/D A1 τ1(ns) A2 τ 2(ns) A3 τ3(ns) τint(ns) χ2 

1.8 177 31.96 1037 4.33 13648 1.35 7.88 1.20 
5.3 108 25.46 4150 2.34 10953 1.17 4.25 1.11 
8.9 85 22.51 6648 2.05 8545 1.03 3.30 1.09 

14.2 61 21.51 7053 2.02 8142 1.02 2.74 1.03 
21.3 53 18.52 8478 1.92 6934 0.93 2.34 1.18 
32.0 42 18.33 8653 1.92 6712 0.91 2.19 1.14 
53.3 45 17.89 8789 1.90 6729 0.91 2.19 1.16 
81.7 39 16.05 9252 1.88 6092 0.86 2.03 1.19 
110.1 27 18.97 8715 1.92 6689 0.93 2.03 1.20 
138.6 26 15.15 9299 1.90 6109 0.87 1.89 1.15 
152.8 12 24.03 9177 1.86 6236 0.90 1.90 1.36 

 

Table 7.2.2 TRPL measurement analysis  of the 525 nm emitting donors at 581 nm varying 

the A/D concentration ratio.  

 
 
 
 
 
 

TRPL analysis of 525 nm emitting dots at 525 nm with respect to changing A/D 
A/D A1 τ1(ns) A2 τ 2(ns) A3 τ3(ns) τint(ns) τamp(ns) Eff % χ2 

0 2341 29.32 4753 10.09 7438 0.84 20.36 8.46 0 1.25 
1.8 2334 29.32 4667 9.99 7754 0.80 20.42 8.22 2.80 1.26 
5.3 2367 29.52 4631 10.15 7427 0.88 20.63 8.55 ~0 1.24 
8.9 2357 29.78 4452 10.14 7504 0.91 20.91 8.54 ~0 1.22 

14.2 2328 29.78 4436 10.23 7513 0.98 20.78 8.55 ~0 1.23 
21.3 2221 30.08 4212 10.44 7725 1.06 20.82 8.40 0.64 1.21 
32.0 2073 30.12 4059 10.65 7618 1.21 20.48 8.35 1.19 1.20 
53.3 1541 30.46 3040 10.96 9284 1.37 19.48 6.71 20.65 1.15 
81.7 1023 30.70 1985 10.96 11229 1.48 17.59 4.90 42.01 1.20 
110.1 720 29.36 1248 9.56 12322 1.51 14.76 3.62 57.22 1.22 
138.6 556 27.19 10004 6.93 12980 1.50 11.77 2.85 66.26 1.20 
152.8 247 25.69 963 4.77 13079 1.43 7.14 2.07 75.50 1.22 
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TRPL analysis of 525 nm emitting dots at 605 nm with respect to changing A/D 

 
A/D 

A1 τ1(ns) A2 τ2(ns) A3 τ3(ns) τint(ns) χ2 

1.8 128 46.63 404 9.03 14116 1.46 11.29 1.16 
5.3 117 26.16 5379 2.23 9774 1.07 4.62 1.17 
8.9 98 21.87 7350 2.02 7983 0.99 3.39 1.19 
14.2 51 23.24 7585 2.00 7815 0.98 2.73 1.07 
21.3 57 23.50 7200 2.05 8094 1.02 2.88 1.06 
32.0 44 16.98 8977 1.93 6397 0.90 2.15 1.23 
53.3 45 17.29 8895 1.90 6614 0.86 2.16 1.22 
81.7 38 17.00 9089 1.92 6397 0.88 2.09 1.21 
110.1 29 18.90 9230 1.91 6061 0.88 2.07 1.20 
138.6 27 15.80 9512 1.89 5789 0.83 1.92 1.25 
152.8 13 17.37 9138 1.86 6186 0.88 1.79 1.18 

 
 

Table 7.2.3 TRPL measurement analysis of the 525 nm emitting donors at 605 nm varying 

the A/D concentration ratio.  

 

TRPL analysis of 552 nm emitting dots at 552 nm with respect to changing A/D 
 

A/D 
A1 τ1(ns) A2 τ2(ns) A3 Τ3(ns) τint(ns) τamp(ns) Eff. % χ2 

0 2524 36.75 6271 15.85 4265 1.26 25.26 1.12 0 1.12 
1.8 2605 35.90 6016 15.61 4662 1.21 25.02 1.13 3.90 1.13 
5.3 1572 41.03 6062 15.95 5216 1.57 24.81 1.17 12.83 1.17 
8.9 2151 35.78 4973 15.35 6317 1.27 24.40 1.14 20.63 1.14 
14.2 2212 34.70 4567 14.76 6742 1.32 23.99 1.11 25.14 1.11 
21.3 2063 34.85 4498 14.92 6827 1.42 23.67 1.12 26.55 1.12 
32.0 1561 34.80 3657 14.87 8501 1.46 22.44 1.14 41.63 1.14 
53.3 967 35.42 2418 14.83 10387 1.56 20.51 1.13 58.55 1.13 
81.7 521 34.78 1201 13.95 12215 1.62 16.38 1.15 74.03 1.15 
110.1 320 34.61 720 12.74 13095 1.63 12.86 1.17 80.54 1.17 
138.6 348 25.09 3560 2.78 10949 1.33 8.01 1.23 85.23 1.23 
152.8 269 25.79 4194 2.65 10499 1.28 7.16 1.15 86.08 1.15 

Table 7.2.4. TRPL measurement analysis of the 552 nm emitting donors at 552 nm varying 

the A/D concentration ratio. 
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TRPL analysis of 552 nm emitting dots at 581 nm with respect to changing A/D 
 

A/D 
A1 τ1(ns) A2 τ2(ns) A3 τ3(ns) τint(ns) χ2 

1.8 1566 35.80 3515 15.18 8940 1.41 23.23 1.12 
5.3 1042 34.53 2124 14.24 10977 1.44 20.67 1.10 
8.9 774 34.15 1518 13.53 12159 1.46 18.64 1.12 

14.2 508 34.86 1080 13.33 12809 1.48 16.38 1.16 
21.3 486 32.94 913 12.23 13030 1.50 14.85 1.12 
32.0 425 31.51 755 10.77 13304 1.49 13.05 1.14 
53.3 278 31.41 543 9.88 13606 1.51 10.36 1.14 
81.7 237 28.43 568 6.27 13723 1.48 7.96 1.12 
110.1 209 25.08 4409 2.48 10629 1.18 6.05 1.05 
138.6 181 24.82 5258 2.32 9634 1.13 5.51 1.06 
152.8 167 24.72 4266 2.44 10793 1.19 5.22 1.05 

 

Table 7.2.5 TRPL measurement analysis of the 552 nm emitting donors at 581 nm varying 

the A/D concentration ratio  

 
 
 

TRPL analysis of 552 nm emitting dots at 605 nm with respect to changing A/D 
 

A/D 
A1 τ1(ns) A2 τ2(ns) A3 τ3(ns) τint(ns) χ2 

1.8 701 42.56 1591 15.37 11970 1.46 23.28 1.13 
5.3 548 40.07 1320 14.82 12481 1.51 19.85 1.11 
8.9 478 36.82 971 13.21 13060 1.52 16.85 1.15 
14.2 342 37.02 763 13.08 13383 1.53 14.63 1.14 
21.3 306 33.70 594 10.39 13481 1.50 12.05 1.14 
32.0 300 33.09 596 10.16 13407 1.53 11.55 1.17 
53.3 255 27.88 897 4.70 13627 1.43 7.99 1.10 
81.7 225 25.53 3185 2.73 11804 1.26 6.47 1.09 
110.1 161 24.90 5866 2.28 9180 1.11 5.13 1.05 
138.6 134 23.86 6681 2.16 8412 1.04 4.42 1.08 
152.8 119 25.71 5840 2.25 9138 1.09 4.55 0.98 

 

Table 7.2.6 TRPL measurement analysis of the 552 nm emitting donors at 605 nm varying 

the A/D concentration ratio.  
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Figs 7.2.3 and 7.2.4 demonstrate clearly the effect of Förster radius on the 

lifetime modifications of the donor and acceptor molecules. For further analysis, 

we also calculate energy transfer efficiency and light harvesting enhancement of 

the acceptor emission. The energy transfer efficiency is extracted from the 

amplitude weighted donor lifetime, ampτ in the presence and absence of the 

acceptor molecules using Eqn. 7.2.3  

                                                       

                                                
1 DA

FRET
D

τη
τ

= −
                                              

7.2.3 

 

Here DAτ  is the ampitude weighted lifetime of donors in the presence of 

acceptors and Dτ  is that of donors in the absence of acceptors.  

 

Fig. 7.2.5a reveals the comparison of efficiency levels extracted from TRPL 

measurements. Here we observe that the energy transfer efficiency increases 

with the increased A/D concentration ratio, as the donors find more acceptors 

around them to transfer more of their excitation energy. Tuning the A/D 

concentration ratios, and using better optimized 552 nm emitting QD donors, we 

observe a maximum energy transfer efficiency of 86%, which is obtained at an 

A/D concentration ratio of 152.8 in our experiments. This comparison shows 

TRPL analysis of 581 nm emitting Rhodamine B molecules at 581 nm 
A1 τ1(ns) A2 τ2(ns) A3 τ3(ns) τint(ns) χ2 

-17 0.001 8277 1.98 7105 1.006 1.68 1.88 
TRPL analysis of 581 nm emitting Rhodamine B molecules at 605 nm 

A1 τ1(ns) A2 τ2(ns) A3 τ3(ns) τint(ns) χ2 

10225 1.89 25883 0.53 -22115 0.45 1.69 1.23 

 

Table 7.2.7. TRPL measurement analysis  of the 581 nm emitting acceptors at 581 and 605 

nm varying the A/D concentration ratio.  
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that the efficiency levels are higher using 552 nm emitting QDs than those of 

525 nm emitting ones.  

 

To show the effect of nonradiative energy transfer mediated light harvesting on 

the emission enhancement of the acceptor molecules, we further compute the 

light-harvesting factor for the acceptor emission (Fig. 7.2.5b) These calculations 

are carried out through fitting SSPL measurements (in Fig. 7.2.2) of the donor 

QDs to a Gaussian distribution and comparing the overall emission 

(donor+acceptor mixture) with the emission of only acceptors (corresponding to 

the same concentration of acceptor molecules used in each A/D concentration 

point). In these calculations, the tail overlap of the donor emission on the 

acceptor emission is also considered, and any possible contribution from the tail 

(although weak) is also subtracted. Here we observe that the relative 

enhancement factor of the acceptor emission is decreased with the increased 

A/D concentration ratio, because the acceptors increasing in number find fewer 

donors around them to be fed via nonradiative energy transfer, which indicates a 

tradeoff between the efficiency and light harvesting factor.  

 

Also, we again observe that 552 nm emitting aqueous CdTe QDs are better 

light-harvesting antennas in water for Rhodamine B dye molecules in 

comparison to those QDs emitting at 525 nm. In the light of these experiments 

and analyses, such light harvesting is possible; however, one needs to consider 

the tradeoff between the efficiency and the enhancement factor to choose an 

operating point. These results also indicate that nonradiative energy transfer 

assisted light harvesting may enable QD multiplexed dye biodetection systems. 
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Figure 7.2.6 Comparison of (a) FRET efficiencies and (b) enhancement of the acceptor 

emission at room temperature, using 552 nm and 525 nm emitting CdTe QD donors, as a 

function of the A/D concentration ratio.  
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7.3 Summary 
 

In this chapter, we have presented nonradiative energy transfer based light 

harvesting of aqueous colloidal CdTe QD antennas for dye molecules in water. 

Our experiments show that these QDs used as donors need to be carefully 

optimized to match Rhodamine B used as acceptors. In our experiments, we 

have observed strong lifetime modifications of these CdTe QDs from 25.3 to 7.2 

ns. We have demonstrated the energy transfer efficiency tuning up to 86% as the 

acceptor-donor concentration ratio is varied. Since there is no additional 

electrostatic interaction to keep the QD and dye in close proximity, the achieved 

efficiency levels is smaller than the case with the interaction (Chapter 6). These 

experiments indicate that nonradiative energy transfer mediated light harvesting 

using aqueous QDs leads to enhanced emission of dye molecules in water at 

wavelengths beyond the absorption range of the dyes. One should also note that 

a good operating point in the A/D concentration ratio for a specific donor-

acceptor pair has to be set to provide both reasonably high efficiency and high 

light harvesting of the acceptor emission.  
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Chapter 8 
 

Excitonic interactions in very large-
area free-standing membranes of 
colloidal InP/ZnS quantum dots 
 
 
 
This chapter is based in part on the paper work of  “Very large-area free-

standing membranes of colloidal InP/ZnS quantum dots,” Evren Mutlugun, 

Pedro Ludwig Hernandez Martinez, Yasemin Coskun, Cuneyt Eroglu, Talha 

Erdem, Vijay K. Sharma, Emre Unal, Subhendu K. Panda, Stephen G. Hickey, 

Nikolai Gaponik, Alexander Eychmuller, and Hilmi Volkan Demir, in 

submission (2011). 
 

8.1 Introduction 
 

In this chapter we propose and demonstrate the fabrication of flexible, 

freestanding membranes of colloidal InP/ZnS QDs (QDs) with fatty acid ligands 

in very large areas (over 50 cm × 50 cm), which have been developed for 

excitonic interactions towards remote phosphor applications for high-

temperature light-engines in solid-state lighting. Embedded in poly (methyl 

methacrylate) matrix, while the formation of stand-alone films using those QDs 

commonly capped with TOPO and oleic acid is not possible, the ligand myristic 

acid employed for the synthesis of these QDs imparts a strong hydrophobic 

character to the thin film and enables easy peel-off and membrane formation 

even in large areas, thereby avoiding the need for a ligand exchange. When 
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hybridized with a blue LED, these Cd-free QD membranes allow for high color-

rendering, warm white light generation (with a CRI ~90 and a CCT <3500 K). 

In the membrane, the temperature-dependent emission kinetics and energy 

transfer dynamics among different-sized InP/ZnS QDs are studied. High energy 

transfer efficiency (up to 80%) and strong donor lifetime modification (from 18 

to 4 ns) are achieved. The suppression of the nonradiative channels is observed 

when the membrane is cooled to cryogenic temperatures. The changes in the 

experimental lifetime of the donor and acceptor InP/ZnS QDs as a result of the 

excitonic energy transfer are in excellent agreement with our theoretical model 

based on the exciton-exciton interaction among the membrane dots. The ability 

to make such very large-area, flexible, freestanding Cd-free QD membranes 

paves the way for environmental friendly phosphor applications including 

flexible, surface-emitting light-engines using point-source inorganic LEDs.  

 
In the past few decades the colloidal QDs have gained substantial interest for 

innovative applications including those in solid state lighting [122,123]. The 

demand for QD particles arises as a result of their unique optical and electronic 

properties. The band gap engineering, by choosing the size and composition of 

the particles, has made semiconductor QDs very versatile in various applications 

[14,124]. From an application point of view, the use of these QDs is essential, 

not only in solution but also in a host media. Till date, there have been previous 

reports on polymer-QD composites. The QDs, mostly the II-VI type Cd based 

ones, have been studied extensively for their use in polymer matrix to benefit 

from the advantageous properties of the polymers [125,126,127]. By using them 

in a composite form, QDs gain elasticity and processability which they cannot 

provide in their synthesized form [128]. Film formation using QDs in solution is 

challenging and requires a high level of understanding of the behavior of 

complex mixtures of such materials in order to make films with high optical 

quality. The optimal QD film should be capable of standing alone; provide 

versatility, flexibility, mechanical strength; and be able to be fabricated in large 

areas. This requirement presently drives the research on stand-alone flexible 
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films of QDs. Considering the research efforts for the large-area flexible 

electronics [129], the implementation of the QD based large-area systems is 

highly desirable for large-area optoelectronic device applications, e.g., sensors 

and displays. So far, literature lacks on the demonstration of free standing QD 

films except for a few reports with just of a few cm×cm area. In their report, 

Tetsuka et. al. [130] presented small-area flexible clay films of Cd-containing 

QDs. Although this work provides a good level of understanding of the use of 

QDs in films, the procedure is challenging since it requires ligand exchange of 

the dots and preparation of the clay suspension. Also, from the applications 

point of view, the use of Cd-containing QD films are not favored due to their 

toxicity. Therefore, In-based QDs make a strong candidate as a possible 

alternative to their toxic Cd-containing counterparts. 

 

While research on Cd-based colloidal QDs (CdSe, CdTe, CdSe/CdS, CdSe/ZnS) 

is quite mature with respect to their synthesis and applications [58,131,132,133, 

134]. Research on In-based QDs has mainly focused on the synthesis 

methodology and understanding of the growth mechanisms and crystal structure 

of these dots [79, 80, 135,136,137,138,139]. Moreover, the use of In-based QDs 

for various applications have not been investigated except for a few reports that 

discuss about lasing possibilities and imaging of cells [140,141]. To cater for 

these missing points, we propose and demonstrate a flexible, stand-alone, very 

large-area films of InP/ZnS QDs promising for high-end applications. We also 

show white light generation using these membranes hybridized on a blue LED 

platform for remote phosphor application and study the emission kinetics and 

nonradiative energy transfer among the different sized QDs as a function of 

temperature, which has not been addressed in the literature till date. 
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8.2 Results and discussion 
 

In this work, InP/ZnS QDs with fatty acid ligands are used, which do not require 

any ligand exchange in the subsequent membrane formation process. The ligand, 

myristic acid, employed for the synthesis of QDs, is a fatty acid that provides a 

good hydrophobic surface when mixed with poly (methyl methacrylate) 

(PMMA) (Fig.8.2.1). Furthermore, QDs dissolved in PMMA can be peeled off 

easily from the substrate after the solvent is evaporated (see Fig. 8.2.1). In 

addition, control experiments were performed using only PMMA and PMMA 

mixed with TOPO and oleic acid capped QDs and it was found that these do not 

allow the formation of stand-alone films. 

 

 

Figure 8.2.1. Chemical structure of the myristic acid (left) and PMMA (right). 

 

The details of the sample preparation are given as follows: As-synthesized 

InP/ZnS QDs (for which the synthesis method is given in Section 3.3.1) are 

cleaned using isopropanol, acetone and methanol extraction to get rid of the 

excess amount of organic ligands and the precipitated particles are dissolved in 

fresh hexane. PMMA, A15 (MicroChem) is diluted with anisole and the QDs are 

injected into the PMMA resin under strong mixing conditions. The solution is 

stirred further for 30 min to prevent any possible agglomeration and to mix well 

the QDs with the PMMA and then drop-casted on the pre-cleaned glass 

substrate. The QD film is left to dry under a controlled evaporation set-up 

overnight and then peeled off easily from the substrate to provide a high optical 
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quality, free-standing, flexible film. The peeling of the film is possible because 

of the interaction of the ligand of the QDs, the fatty myristic acid, with PMMA, 

thus providing a hydrophobic layer on glass substrate ready to be peeled off 

from the surface. The contact angle measurements provided in the Fig. 8.2.2 also 

confirms that the films are hydrophobic.    

       

 
Figure 8.2.2  Contact-angle measurement of the free standing InP/ZnS film showing the 

hydrophobic property with contact angles of ~890  (for left and right).  

 

 

Figure 8.2.3 Photograph of the 50 cm × 50 cm PMMA-InP/ZnS QD membrane under room 

light (left) and UV illumination (right). 
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In order to characterize the internal elemental structure of the film, we carried 

out X-ray photoelectron spectroscopy (XPS) experiments. The high resolution 

Carbon 1s and Oxygen 1s spectra for the PMMA polymer, InP/ZnS QDs and the 

composite are shown in Fig. 8.2.4. For PMMA, C 1s spectra are resolved into 

three components with different bonding states, i.e., C-C at 285 eV, O-CH3 at 

286.5 eV, and O-C=O at 288.9 eV, respectively. O 1s spectra of PMMA consist 

of two components, i.e., C=O at 532.1 eV and C-O-C at 533.6 eV.  The atomic 

percentage of the peaks are C-C (51.49 %), O-CH3 (15.12 %), O-C=O (11.18 

%), C=O (9.79 %), and C-O-C (12.42 %), which is almost similar to standard 

XPS spectra of PMMA [142]. High Resolution C 1s and O 1s spectra of QDs 

(due to ligands) show single peaks at 285.0 eV and 532.1 eV, respectively. The 

C 1s spectra of the composite (PMMA-QD film) are also resolved into three 

components and O 1s spectra are resolved into two components similar to pure 

PMMA. Although we do not observe shifts in the peaks, we observe 

modifications in the atomic percentages of the peaks due to the presence of QDs 

in the composite. In this the atomic percentage of the peaks are C-C (58.58 %), 

O-CH3 (11.03 %), O-C=O (5.26 %), C=O (22.29 %) and C-O-C (2.84 %). We 

also observed a huge decrease in the intensity of C 1s peak of pure QDs in the 

mixture, which also suggests change in the microenvironment of QDs in the 

presence of PMMA.  
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Figure 8.2.4 XPS spectra of InP/ZnS QD only, PMMA only, and the composite membrane 

for elemental carbon analysis. 
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A typical XPS survey spectrum for the PMMA-QD composite is shown in Fig. 

8.2.5.  The survey scan indicates the presence of In, P, Zn, and S from the 

InP/ZnS QDs as well as C, and O from the PMMA polymer. A high-resolution 

XPS spectrum for all elements has been also shown. The In core is orbit split to 

3d5/2 and 3d3/2, with the 3d5/2 peak positioned at 444.40 eV and the 3d3/2 peak 

positioned at 451.96 eV. The P 2p core shows two peaks, one at 129.17 eV 

corresponding to P from InP and the other at 132.54 eV corresponding to 

oxidized P species. HR-XPS spectra of S 2p (161.86 eV) and spin-orbit split Zn 

2p3/2 (1021.70 eV), 2p1/2 (1044.76 eV) are also presented. This is further 

confirmed by the shift in the QD elemental peaks by 0.3 eV in the composites in 

comparison to the pure QDs (see Fig. 8.2.5) [143]. This shift is presumably due 

to the fact that existence of polymer influences the microenvironment of the 

elemental ions in QDs. XPS results confirmed that the PMMA QD mixture is a 

composite structure. 
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Figure 8.2.5  XPS spectra of the InP/ZnS QD-PMMA membrane. 
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In order to investigate the mechanical properties of the film, a stress-strain 

characterization applying a load on the membrane is performed. For the tests 

using a 35μm thick film, the ultimate tensile strength, σuts, is found to be 28.6 

MPa, while the offset yield strength at 0.2%, σ.2%ys, is 28.4 MPa and the Young 

modulus, E, is 2.85 GPa, which is in the range of the reported Young Modulus 

value for the PMMA (see Fig. 8.2.6). 

 

Figure 8.2.6 Stress-strain measurement of a 35 μm thick InP/ZnS QD-PMMA film.  

 

To investigate the kinetics of InP/ZnS QDs in film form, we studied a Förster-

type nonradiative energy transfer (FRET) between the different sized dots. The 

use of QDs as energy transfer agents for FRET-based applications is also an 

important area for the utilization of QDs since FRET plays a significant role in 

the development of new platforms for light detection, light harvesting, etc. 

[7,144,145,146]. Such FRET-based systems have been widely used in 

connection with dyes, proteins, and other nanostructured materials including 

nanowires, quantum wells, and QDs [46,105,106,107,147,148,149,150] .  



101 
 

 

Figure 8.2.7 Normalized room temperature photoluminescence (solid line) and absorption 

(dashed line) spectra of the donor and acceptor InP/ZnS QDs. Transmission electron 

microscopy (TEM) image of the donor/acceptor QDs (inset). 

 

Fig. 8.2.7 shows the emission and absorption spectra of exemplary InP/ZnS QDs 

in solution together with the transmission electron microscopy (TEM) image in 

the inset. The donor and acceptor QD diameter here is measured to be ~2.4 and 

2.8 nm, respectively both with a size variation of ~ <10%. The acceptor QDs are 

chosen to emit around 100 nm away from the donor emission peak to prevent 

the emission overlap to a significant extent.  
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Figure 8.2.8 Time resolved photoluminescence (TRPL) spectra of the donor QD without 

the acceptor (top) and the donor QD with the acceptor (bottom), measured at the donor 

emission wavelength of 490 nm, as a function of decreasing sample temperature (inset). 

The exponential fits of the observed decays for the donor (with and without acceptor) are 

also given. 

 
The effect of the acceptor on the donor emission kinetics, i.e., FRET between 

the dots, is studied by comparing the time resolved photoluminescence (TRPL) 

spectra of the bare donor QD containing film with the donor-acceptor mix QD 

film (with both samples having the same donor concentration) (see Fig. 8.2.8). 

In the films, the peak emission wavelengths of the donor and acceptor QDs are 

490 and 590 nm, respectively. Therefore, they are spectrally well separated from 

each other (see Fig. 8.2.14), which makes the time-resolved analysis viable. The 

temperature dependence of the time-resolved fluorescence for each species of 

interest was also investigated and the decay curves were fit using a tri-

exponential fitting function. Using tri-exponentials for the fitting is due to the 

nontrivial emission kinetics of the InP/ZnS QDs. The amplitude-weighted-

lifetime values, for the donor only films, range from 18.45 to 28.26 ns as the 

sample temperature is decreased from 300 to 30 K. As the donor only sample 
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was cooled from room temperature to cryogenic temperatures (30 K), the 

photoluminescence decay curves slowed down, which implies the suppression of 

nonradiative recombination channels. (The in-film PL intensity of the donor and 

acceptor QDs as a function of temperature is given in Fig. 8.2.9.) In addition, we 

compare the emission kinetics of the donor only sample with the donor-acceptor 

hybrid membrane. We observe a significant decrease in the lifetime of the donor 

QDs when they are in the presence of acceptors. In other words, the donor 

lifetime decreases as it transfers its excitation energy to an acceptor present in 

close proximity in the film. Another conclusion derived from the temperature 

dependent lifetime measurements of the hybrid film is that, as the film is cooled 

to cryogenic temperatures, the nonradiative recombination channels are 

suppressed. Therefore, the lifetime becomes longer as in the case of the donor 

only film. These results are shown in Fig. 8.2.8 together with the insets of the 

temperature dependent lifetimes of the donor only and hybrid samples, and are 

summarized in Table 8.2.1. The change of the photoluminescence intensity of 

the donor and acceptor QDs as changing the sample temperature is also shown 

in Fig. 8.2.9, which indicates the suppression of the nonradiative recombination 

as the sample is cooled down.  
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Figure 8.2.9 Temperature dependent photoluminescence intensity of the donor (top) and 

acceptor (bottom) QDs, extracted from the time-resolved photoluminescence 

measurement. The photoluminescence intensity is extracted from the set-up using the same 

time interval for the photon counts.  

 
Using the modification of the donor lifetimes, we calculate the corresponding 

FRET efficiencies using Eqn. 7.2.1. We observe ~80% energy transfer 

efficiency (see Fig. 8.2.10 and Table 8.2.2), which is in good agreement with 

our theoretical model based on exciton-exciton interaction. In addition, the 

donor energy transfer rates, extracted from the experimentally measured lifetime 

values have been given in Fig. 8.2.11. 
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Figure 8.2.10 Theoretical (red circles) and experimental (black squares) FRET efficiencies 

as a function of temperature.  

 

 

Figure 8.2.11 Donor energy transfer rate calculated using the experimentally measured 

lifetime values as a function of temperature.  
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From the acceptor point of view, the energy feeding increases its lifetime, which 

is an indication for the FRET mechanism. Fig. 8.2.12 depicts the decays and the 

modifications observed in the acceptor lifetime when an acceptor only film is 

compared with that of a hybrid film. The acceptor lifetime increases as the 

sample is cooled to cryogenic temperatures. By comparing the acceptor 

emission in the hybrid form with the acceptor only case (with the same amount 

of acceptor dots), we observe that the acceptor lifetime is increased as a result of 

the energy transfer indicating the Förster-type energy transfer. Due to the 

possible emission overlap, stemming from the donor emission tail that extends 

towards the peak emission wavelength of the acceptor, we also investigated the 

changes in the lifetime of the acceptor emission at 640 nm, far from the donor 

emission tail. The acceptor lifetime trends are similar to those observed at 590 

nm; but, in this case, the lifetime values are greater because the decay kinetics of 

the QDs is different at different wavelengths.  
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Figure 8.2.12 (A) TRPL spectra of the acceptor without the donor (at 590 nm); (inset) the 

acceptor  lifetimes (with and without the donor). (B) TRPL of the acceptor with the donor 

(at 590 nm). (C) TRPL of the acceptor (without the donor) (at 640 nm, far from the donor 

emission tail), (inset) the acceptor lifetimes (with and without the donor). (D) TRPL of the 

acceptor (with the donor) (at 640 nm). All curves and data are given parametrized with 

respect to or as a function of the temperature and the lifetimes are fit with triple 

exponentials.  
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Analysis of the changes in the lifetime of the acceptor 

Temp (K) 

Acceptor 

lifetime 

(@590nm) (ns) 

Donor+Acceptor hybrid 

lifetime (exp)(@590nm) 

(ns) 

Donor+Acceptor hybrid 

lifetime (theory) (ns) 

Donor+Acceptor hybrid 

lifetime (theory, 

including T dependence) 

(ns) 

300 10.53 16.56 18.84 17.65 

250 11.07 17.62 19.80 20.87 

200 13.33 19.92 23.85 24.09 

150 14.94 23.14 26.73 27.31 

100 16.95 25.73 30.32 30.53 

50 19.46 29.33 34.81 33.75 

30 19.44 29.39 34.78 35.04 

Table 8.2.1 Experimental and theoretical changes in the lifetime of the acceptor alone and 

in the hybrid film with the donor at different temperatures. 

 

In our theoretical approach, we describe the optical properties of InP/ZnS QDs 

consisting of two different sizes. We consider a single QD pair composing of a 

donor (a smaller QD) and an acceptor (a larger QD), which are under exciton-

exciton interaction. Within the simplest rate model, the lifetime in the presence 

of an acceptor is given by 

                                                    

6
01

D
D exc
DA

R
r

ττ =
 +  
                                            

8.2.1 

 

where D
DAτ  is the donor (acceptor) exciton lifetime when the energy transfer 

takes place. The energy transfer rate ( transγ ) between the D-A QD pair is given 

by 
6

01
trans

D

R
r

γ
τ

 =  
                                        

8.2.2 
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where 0R is the Förster radius for the D-A pair and r  is the separation distance 

for the D-A QD pair. 

 

Table 8.2.2 shows the experimental and theoretically calculated lifetimes for the 

donor and acceptor pairs when the measurements are analyzed at both the donor 

and acceptor emission wavelengths. The average separation distance, r , 

between the D-A pair is estimated to be 3.63 nm. The Förster radius is 

calculated as 4.52 nm. 

Analysis of the changes in the lifetime of the donor 

Temp 
(K) 

Donor 
lifetime 

(@490nm) 
(ns) 

Donor+Acceptor hybrid 
lifetime(exp)(@490nm)  

(ns) 

Donor+Acceptor 
mixed lifetime 

(theory, including T 
dependence) (ns) 

FRET 
eff. (exp) 

FRET eff. 
(theory, 

including T 
dependence) 

300 18.45 3.89 3.83 0.789 0.793 
 250 19.32 4.97 4.26 0.742 0.779 
200 22.27 5.55 4.70 0.751 0.789 
150 24.99 5.85 5.14 0.766 0.794 
100 26.99 6.33 5.57 0.765 0.793 
50 29.04 6.14 6.01 0.789 0.793 
30 28.26 6.63 6.18 0.765 0.781 

 

Table 8.2.2 Experimental and theoretical changes in the lifetime of the donor alone and in 

the hybrid film with the acceptor, along with the FRET efficiencies, at different 

temperatures. 

 

 Fig. 8.2.13 illustrates exciton-exciton interaction model we use for a donor (D) 

and acceptor (A) QD pair. Within the simplest rate model, the number of 

excitons ( )excN  trapped in the QD, under constant illumination (steady-state 

condition), is given by 
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( ) 0D D
exc trans exc DN Iγ γ− + + =

                                   
8.2.3 

 

                                         ( ) 0A A D
exc exc trans exc AN N Iγ γ− + + =

                            
8.2.4 

 

where ( )D A
excN  is the number of donor (acceptor) excitons, ( )D AI  is the exciton 

generation rate due to the light excitation, and ( ) ( ) ( )
, ,

D A D A D A
exc exc rad exc non radγ γ γ −= +  is the 

donor (acceptor) exciton recombination rate in the absence of the acceptor 

(donor). ( )
,

D A
exc radγ  and ( )

,
D A
exc non radγ −  are the radiative and nonradiative components of 

( )D A
excγ . transγ  is the energy transfer rate between the donor and acceptor. By 

substituting D
excN  from Eqn. 8.2.3, Eqn. 8.2.4 can be written as 

                                         
( ) 0A A D

exc exc trans AD
exc trans

IN Iγ γ
γ γ
 

− + + = +                          
8.2.5 

                                                           

Assuming that 0D AI I I≅ = , then Eqn. 8.2.3 and 8.2.5 are rearranged as follows:                                          

                

                                       ( ) 0 0D D
exc trans excN Iγ γ− + + =

                                 8.2.6 

                                     

                                       ( ) 0 0
2

D
A Aexc trans
exc excD

exc trans

N Iγ γγ
γ γ
 +

− + = +                              
8.2.7 

                                 

From the last two equations, one defines 
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        ( )D D
DA exc transγ γ γ= +

                                      8.2.8 

                                                           

( ) 2

D
A A exc trans
DA exc D

exc trans

γ γγ γ
γ γ
 +

=  +                                    
8.2.9

       

                                                  

where ( )D A
DAγ  is the donor (acceptor) exciton recombination rate in the presence 

of energy transfer. For the energy transfer rate between the D-A QD pair, we use 

6
0

trans D
R
r

γ γ  =  
 

, where 0R  is the Förster radius for the D-A pair and r  is the 

separation distance for the D-A QD pair (This assumption is reasonable because 

the energy transfer between spherical QDs is well described by the Förster 

theory). Therefore, Eqns. 8.2.8 and 8.2.9 are given by
  

 

6
01D D

DA exc
R
r

γ γ
  = +                                           

8.2.10 
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In terms of lifetimes, 

6
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D
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 +  
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8.2.12 
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8.2.13 

 

         

     

Figure 8.2.13 (a) Donor-Acceptor (D-A) schematic for a single donor (D) and acceptor (A). 

(b) Energy diagram for the D-A pair energy transfer process. Blue dashed lines represent 

the absorption process of the QD (donor/acceptor). Blue solid lines show fast relaxation 

process. Red dashed lines illustrate light emission process (relaxation from the lowest 

excited state to the ground state). Black solid lines represent the energy transfer from the 

donor to the acceptor. Horizontal black dashed line shows the Coulomb interaction 

between the donor and acceptor. 
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Fig. 8.2.14 shows the emission spectra of the donor only and acceptor only 

photoluminescence spectra of the QDs, together with the hybrid donor-acceptor 

emission spectra under the room temperature conditions. As a result of FRET, 

the donor emission is suppressed by ~80% whereas the overall acceptor 

emission is increased by ~30%, which is obtained from the hybrid emission 

spectra (fit to the donor-acceptor emission in a Gaussian profile form, as shown 

in the inset of Fig. 8.2.14). We also compare the results of the time-resolved 

measurements with the room temperature steady-state measurements. The 

modification of the steady-state photoluminescence of the donor and acceptor 

matches quite well that of the room temperature time-resolved lifetime 

modifications (79% for the donor and 57% for the acceptor). This implies that 

the excitons transferred from the donor are partly contributed to the nearby 

acceptor. Here the theoretical analysis, we considered the temperature 

dependence using a semi empirical approach by calculating the change in the 

lifetime of the donor/acceptor species as a function of temperature (see inset Fig. 

8.2.8 and 8.2.9).  
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Figure 8.2.14 Steady-state room temperature photoluminescence spectra of the donor only, 

acceptor only and hybrid film. Steady-state room temperature photoluminescence spectra 

of the donor only, acceptor only and hybrid film of the same when the hybrid emission is 

fit to the donor and acceptor emissions as Gaussian curves (inset). 

 
Finally, as a possible promising demonstration of the stand-alone films, we 

employed the bilayer films for the white light generation, to be hybridized on a 

blue LED platform. The white light generation using InP-based emitters has 

been addressed in the literature by Nann and coworkers using red emitting 

InP/ZnS QDs, whereas the green gap has been resolved using a doped 

phosphors. On the other hand in this work, as the first time demonstration, we 

present the white LED (WLED), in which both red and green color components 

have been provided by our bilayer architecture consisting of green and red 

InP/ZnS QDs forming the membrane.  
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Figure 8.2.15  Emission spectra of the color-conversion white LED (WLED) when the blue 

LED chip is hybridized with our bilayer InP/ZnS QDs. 

 

Fig. 8.2.15 shows the emission spectra of the blue LED hybridized with the 

green-red emitting QD films. The white light generation using the excitation 

from the blue LED results in a color rendering index CRI value of 89.30 with a 

correlated color temperature CCT of 2298 K and a luminous efficacy of optical 

radiation LER of 253.98 lm/Wopt. Here these figures of merits used are 

explained as follows: The color rendering index, CRI, is the capability to reflect 

the true colors of the illuminated objects. The correlated color temperature, 

CCT, is the temperature defined for the closest Planckian black-body radiator to 

the operating point on the chromaticity diagram. Luminous efficacy of optical 

radiation, LER, is the spectral efficiency of the light source recognized by the 

human eye [151]. 
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8.3 Summary 
 

In this chapter, the fabrication of the very large-area, free-standing films of the 

InP/ZnS QDs and its WLED application have been demonstrated. Different 

sized QDs have been used to study the Förster- type nonradiative energy transfer 

between them. The experimental data match well the theoretical results based on 

an exciton-exciton interaction model among the donor-acceptor pairs. 

Furthermore, the temperature dependent emission kinetics of the donor-acceptor 

species has been studied to provide a better understanding of the emission 

kinetics. The implementation of the very large-area Cd-free QD membrane and 

the FRET among them QDs holds great promise for future innovative 

optoelectronics and biological applications. 
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Chapter 9 
 
Conclusions  
 

To date FRET has been used as a tool for various purposes including the 

determination of molecular distance, molecular conformational changes and 

biomolecular activity. In the previous literature, QDs have been used with 

organic dyes and fluorophores to form FRET mediating systems. In this thesis, 

we proposed and demonstrated tunable, versatile FRET mediated light 

harvesting systems, together with the introduction of a new concept of the 

enhancement of the acceptor emission by FRET mechanism. From the light 

harvesting application point of view, the FRET efficiency itself is found to be 

misleading as strong FRET does not necessarily imply strong light harvesting. In 

our work, the light harvesting is demonstrated using the steady-state 

photoluminescence enhancement of the acceptor side, supported by the 

increased lifetime of the acceptor due to the energy feeding from the donor 

species. This enhancement of the acceptor emission has been used as a powerful 

proof-of-concept demonstration to make the point for the use of the energy 

transfer mechanisms that we have addressed in light harvesting.  

 

In the scope of this thesis work, we studied the implementation of nanocrystal 

QDs for several light harvesting systems. We proposed and demonstrated the 

light harvesting mediated by the excitonic energy transfer both for the QD-

organic dye and the quantum-dot fluorescent protein complexes to overcome the 

limitations of these organic fluorophores. We also demonstrated very large-area 

stand-alone flexible membranes of Cd-free QDs (50 cm × 50 cm) to provide 

new possibilities for high-end, large-scale light harvesting applications. A short 

itemized summary of overall achievements and contributions to the literature in 

this thesis is given as follows. 
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- Colloidal quantum dot synthesis: 

 

• Synthesis of various kinds of semiconductor nanocrystals including 

aqueous CdTe and organic CdSe,  

• Synthesis of near-unity efficiency CdSe/CdS QDs using SILAR method. 

• Synthesis of Cd-free core/shell InP/ZnS QDs. 

 

- Demonstration of FRET mediated light harvesting in QD-fluorescent protein 

complexes: 

 

• Enhancement of green fluorescent protein emission by the use of water 

soluble QDs up to 15 folds and demonstration of controlled energy 

transfer by enzymatic activity. 

 

- Demonstration of FRET mediated light harvesting in QD-organic dye pairs: 

 

• Exciton harvesting of organic dyes with charged CdSe/ZnS QDs 

providing more than 10 fold emission enhancement for dye molecules, 

together with 90% FRET efficiencies. 

• Utilizing water-based different-sized CdTe QDs for efficient exciton 

harvesting, and tuning of the energy transfer to organic dye molecules 

with >85 % FRET efficiencies and strong lifetime modifications.  

 

- Implementation of large-area flexible membranes of Cd-free QDs: 

 

• Demonstration of very large-area (50 cm × 50 cm), flexible and stand-

alone membranes of InP/ZnS QD-polymer composites. 



119 
 

• Study of temperature dependent emission kinetics and energy transfer 

mechanism among different sized quantum dots. 

• Proof-of-concept demonstration of white light generation with InP/ZnS  

QD-polymer composites using the excitation from the blue LED 

resulting in a color rendering index CRI value of 89.30 with a correlated 

color temperature CCT of 2298 K and a luminous efficacy of optical 

radiation LER of 253.98 lm/Wopt. 

 
 
These results presented in this thesis overall provide a good level of 

understanding about the physics and applications of the Förster-type 

nonradiative energy transfer mediated light harvesting systems. The integration 

of such colloidal quantum dots with organic dye molecules and fluorescent 

proteins is believed to open up new possibilities with our proposed exciton 

harvesting enabled systems. Furthermore, with our proof-of-concept 

demonstrations, the large-area flexible membranes will pave the way for high-

end, large-area systems. One of future directions is to make high-efficiency Cd-

free quantum dots and utilize them in innovative light harvesting systems. 

 

Below is given a list of SCI journal publications that resulted from this thesis 

research and related work during my graduate study at Bilkent University. 

 
- E. Mutlugun, P. L. H. Martinez, Y. Coskun, C. Eroglu, T. Erdem, V. K. 

Sharma, E. Unal, S. K. Panda, S. G. Hickey, N. Gaponik, A. Eychmuller, and H. 
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- E. Mutlugun, U. O. S. Seker, P. L. H. Martinez, and H. V. Demir “Exciton 

harvesting of nanocrystal quantum dots for green fluorescent proteins,” in 

submission (2011). 
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Appendix A 
 
Derivation of FRET based  
dipole-dipole interaction 
 

In this derivation, our aim is to find the electric field of the oscillating dipole 

with a dipole moment to obtain the r-6 dependence of the Förster-type energy 

transfer. Starting with the vector potential [152], 
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Since the unit vector and dipole moment are independent of  r, Eqn. A.3 can be 
written as 
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Now, we consider the electric field given as 
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Substituting Eqn. A.5 into Eqn. A.6, we obtain Eqn. A.8 and A.9 as 
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The 1st RHS term of Eqn. A.9  is Eqn. A.10 
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Eqn. A.10 can be rewritten as Eqn. A.12 
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Since dipole moment is not a vector field, the 2nd and 3rd terms in Eqn. A.12 
vanish, and we arrive at Eqn. A.13 
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The 1st term in the RHS of Eqn. A.13 can be written as Eqn. A.14 
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Using the chain rule 
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The 1st term in the 2nd RHS term of Eqn. A.15 is Eqn. A.16 as 
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The 2nd term in the RHS of Eqn. A.15 is written as Eqn. A.19 
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Then the final expression for Eqn. A.14 is Eqn. A.23 as 
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Working on the 2nd RHS term of Eqn. A.13 we obtain Eqn. A.24 as 
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Thus Eqn. A.10 is turned into Eqn. A.26 
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A.27 

 
Now we switch to the 2nd RHS term of  Eqn. A.9, which is given by Eqn. A.28  
 
as  
 

2 ˆ( )
ikre r p

r
 

∇× × 
 



                                                                                            
A.28 

 
Again using the vector identity Eqn. A.11 and vanishing the terms with 

derivative of the dipole moment we obtain Eqn. A.28, which is equal to         

Eqn. A.29
 

 
 

( ) 2 2ˆ ˆ. .
ikr ikre ep r p r

r r
 

∇ − ∇ 
 

 

                                                                               
A.29 

 
The 2nd term of Eqn. A.29 is written as Eqn. A.30

 

 
 

2 2ˆ.
ikr ikre ep r p ikr

r r
 
∇ = 
 

 

                                                                                  
A.30 

 

The 1st term of Eqn. A.29 is given by Eqn. A.31 

 

( ) 2 ˆ.
ikrep r

r
∇



                                                                                                       
A.31 

 
Using the chain rule, we arrive at Eqn. A.32 as 
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3 3

ikr ikr

x y z x y z
e ep p p r r p p p
r x y z x y z r

   ∂ ∂ ∂ ∂ ∂ ∂
= + + + + +   ∂ ∂ ∂ ∂ ∂ ∂   

 

                       
A.32 

 
The first term of Eqn. A.32 is given by Eqn. A.33  

 

3

ikr

x y z
e p p p r
r x y z

 ∂ ∂ ∂
+ + ∂ ∂ ∂ 



                                                                           
A.33 

 

3

ikre p
r

=


                                                                                                               
A.34 

 
The 2nd term of Eqn. A.32 is given by Eqn. A.35 
 

3

ikr

x y z
er p p p

x y z r
 ∂ ∂ ∂

+ + ∂ ∂ ∂ 



                                                                           
A.35 

 
Taking the x derivative only with 
 

3

ikr

x
ep

x r
∂
∂

                                                                                                          

A.36 

3 4

1 3ikr ikr
x

r rp ike e
r x r x
 ∂ − ∂ = +   ∂ ∂  

                                                                   

A.37 

( )( )3 3 ˆ ˆ3 .
ikr ikr

x
e ep ikr p r r

x r r
∂

⇒ = −
∂



                                                                        
A.38 

 
Thus, 
 

( ) ( )( )2 3ˆ ˆ ˆ3 .
ikr ikre er p ikr p r r p ikrp

r r
 

 ∇× × = − + −   
 

   

                                    
A.39 

 

( ) ( )( )3 ˆ ˆ1 3 .
ikre ikr p ikr p r r
r

 = − + − 
 

                                                                      
A.40 

 
 
Now we go back to Eqn. A.27 and rewrite it as Eqn. A.41 
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( ) ( ) ( )3ˆ ˆ ˆ1 ( 3) .
ikr ikre er p ikr p ikr p r r
r r

 
 ∇× × = − + −   

 

  

                                 
A.41 

 
Thus Eqn. A.9 is given as Eqn. A.42

 

 

 

( ) ( )( ) ( ) ( )( )2 2 3
0

1 ˆ ˆ ˆ ˆ ˆ ˆ. 2 . 1 3 .
4

ikr ikre eE ik ikr p r r p p r r ikr p ikr p r r
n r rπε

      = − − − − + −        

     
 

A.42 

 
In order to separate the radial and the angular components,  
 
since 
 

( ) ( )ˆ ˆ ˆˆ ˆ ˆ. . cos sinp p r r p p r pθ θ θ θθ= + = −
  

                                                 
A.43 

 
using 
 
( ) ˆˆ ˆ ˆ3 . 2 cos sinp r r p p r pθ θθ− = +
 

                                                                         A.44 
 
and  
 

( ) ˆˆ ˆ. sinp p r r p θθ− = −
 

                                                                                           A.45 

 
we have 
 

( ) ( )2
2 2

0

1 1ˆ ˆˆsin 2 cos sin
4

ikr ikre eE k p p r p ik
n r r r

θθ θ θθ
πε

  = − − + −  
  



     
A.46 

 
Since  
 

ˆˆrE E r Eθθ= +


                                                                                                    A.47 

 
we obtain 
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2

2 2 3
0

1 1 sin
4

ikr k ikE e p
n r r rθ θ

πε
  −

= − +  
                                                                

A.48 

2 2 3
0

1 2 2 cos
4

ikr
r

ikE e p
n r r

θ
πε

 − = +                                                                  
A.49 

 
Using the long wavelength approximation kr<<1, 
 
we arrive at 
 

2 3

1 1 sinE p
n rθ θ =                                                                                               

A.50 

 

2 3

2 1 cosrE p
n r

θ =                                                                                               
A.51 

 

2 3

1 1ˆˆ2cos sinE r p
n r

θ θθ = + 


                                                                    
A.52 

 

This is the electric field of the oscillating dipole. 

 

 

In the case, where the acceptor molecule is in the zone of the donor, the effective 

electric field felt by the acceptor is [153] 

 

, .A D A DE p E=
 

                                                                                                     A.53 

The donor electric field is given already in Eqn. A.52. 

 

Inserting Eqn. A.52 into Eqn. A.53, the term 

 

ˆˆ2cos . sin .A Ar p pθ θθ+
 

                                                                                              A.54 

  

 



152 
 

 
is called the orientation factor, κ  , of the interacting dipole moments of the donor 

and the acceptor. For a random orientation of the dipole moments of the donor 

and acceptor, 2κ gives 2/3. 

 

The expression for determining the energy absorption of the effective electric 

field ,A DE


is given by 

 
2

,
A

A Dw Eα=                                                                                                   
A.55 

 

Here, α is the constant related to the acceptor optical properties [154]. 

Finally, it is clearly seen that, the 6

1
r

dependence of the energy transfer actually 

results from Eqn. A.55. 

 

Rearranging the terms and taking into account the spectral bandwidths of the 

emission spectra of the donor and the absorption spectra of the acceptor, together 

with the quantum yield of the donor, we also finally arrive at Eqn. 3.2.2, which is 

given previously as 
1

2 4 6
0 0.211( ( ))DR n Q Jκ λ−=                                                                                     A.56 
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