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Carbon Nanotube Driver Circuit 
for 6 × 6 Organic Light Emitting 
Diode Display
Jianping Zou1, Kang Zhang1, Jingqi Li1,†, Yongbiao Zhao1, Yilei Wang2, 
Suresh Kumar Raman Pillai2, Hilmi Volkan Demir1, Xiaowei Sun1, Mary B. Chan-Park2 & 
Qing Zhang1

Single-walled carbon nanotube (SWNT) is expected to be a very promising material for flexible and 
transparent driver circuits for active matrix organic light emitting diode (AM OLED) displays due to 
its high field-effect mobility, excellent current carrying capacity, optical transparency and mechanical 
flexibility. Although there have been several publications about SWNT driver circuits, none of them 
have shown static and dynamic images with the AM OLED displays. Here we report on the first 
successful chemical vapor deposition (CVD)-grown SWNT network thin film transistor (TFT) driver 
circuits for static and dynamic AM OLED displays with 6 × 6 pixels. The high device mobility of  
~45 cm2V−1s−1 and the high channel current on/off ratio of ~105 of the SWNT-TFTs fully guarantee the 
control capability to the OLED pixels. Our results suggest that SWNT-TFTs are promising backplane 
building blocks for future OLED displays.

With increasing demands for a variety of robust, light-weighted, and wearable electronic devices, the 
flexibility and transparency of the devices are required for next generation electronics such as flexible 
displays, sensors and photovoltaic systems, etc1–3. Recently, organic light-emitting diode (OLED) flexi-
ble displays have attracted a lot of attention. OLED displays possess many advantages over traditional 
liquid crystal displays (LCD), such as self-emission, high light efficiency, high brightness and contrast, 
wide viewing angle, low power consumption, and excellent flexibility, etc4,5. They have been used in 
curved televisions, cell phones, digital cameras and other mobile devices. These displays are driven by 
thin-film transistors (TFTs) whose channel materials are typically amorphous silicon, polycrystalline 
silicon, organic and metal oxide semiconductors, nanowires, etc. Amorphous silicon TFTs suffer from 
a low mobility (<1 cm2V−1s−1) and relatively low driving capacity6,7. As a replacement, polycrystal-
line silicon TFTs can provide a bit higher mobility and driving capacity8, but their relatively high cost, 
high-temperature processing, and optical opacity are not compatible with the requirements of future 
display electronics. In comparison, organic and metal oxide semiconductor TFTs have high optical trans-
parency and can be processed at low-temperatures. But, similar to amorphous silicon TFTs, they have a 
relatively low device mobility9–13. Although OLED displays driven by In2O3 nanowire-based transistors 
have been reported14,15, relatively poor device uniformity, low reliability, and processing challenges still 
need to be overcome for good performances.

A single-walled carbon nanotube (SWNT) network inherits the unique properties of SWNTs16–18 
and causes a high device uniformity due to the statistical averaging of multipath transports in the net-
work. In addition, easy accessible fabrication process of SWNT network makes it more suitable to be 
integrated with scalable OLED pixels on a large-area substrate. Recently, SWNT-TFT based flexible 
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devices19,20, integrated logic circuits19,21–24, and even a prototype of carbon nanotube-based computer25 
have shown the outstanding electrical properties and excellent performance. SWNT-TFTs driver cir-
cuits for OLED displays have also been demonstrated on both flexible and hard substrates1,26–30. Due to 
the developments of high-performance TFTs using sorted semiconducting (sc)-SWNTs27,31–33, the most 
reported SWNT-TFTs driver circuits were made from sorted high-purity sc-SWNTs to achieve high on/
off ratios1,27–30. Zhang et al. (Ref. 30) firstly demonstrated sorted sc-SWNTs driver circuits for an active 
matrix (AM) OLED display (20 ×  25 pixels). As they employed the bottom gate structure and coated 
solution-based highly pure SWNTs onto the gate dielectric layer, they did encounter several technical 
challenges, say coating SWNTs uniformly in the channel regions and reducing the dielectric layer rough-
ness, etc. In fact, they did not demonstrate the static and dynamic images of the display and ~30% of the 
pixels were not turned on. In addition, adoption of solution-based sorted sc-SWNTs is usually concom-
itant with several other problems, like contaminants of the surfactants and shortening of the nanotubes 
in the sorting and/or coating processes22,34. The local bottom-gate structure is usually employed in TFTs 
fabrication with solution-based separated SWNTs27,29. However, in the local bottom-gate configuration, 
the SWNTs channel is exposed to its environment. The conduction characteristics of the SWNT-TFTs 
are usually changed after passivation process. All these problems/challenges should be ticketed in order 
to develop high performance SWNT driver circuits for real static and dynamic AM OLED displays. 
However, to our knowledge, such SWNT driver circuits have not been reported yet.

In this paper, we demonstrate, for the first time, chemical vapor deposition (CVD)-grown random 
SWNT network based driver circuits for static and dynamic AM OLED (6 ×  6 pixels) displays. The ran-
dom SWNT network used here has very low contamination and very few short defective SWNTs (see 
Supplementary Fig. S1 online). With a top-gate structure, our SWNT-TFTs show an excellent uniform 
performance with the device mobility of ~45 cm2V−1s−1 and channel current on/off ratio of ~105. These 
key parameters ensure a good control capability of the driver circuit to the large-scale OLED display.

Here, each AM OLED display pixel is integrated with two SWNT-TFTs and one capacitor (2T1C), as 
shown in Fig. 1a. The blue dashed box highlights a single unit 2T1C circuit which consists of one switch-
ing transistor (ST), one driving transistor (DT), one charge storage capacitor (CS), and one OLED pixel35. 
When the scan line (VSCAN) is selected, the ST is switched on so that the image information from the 
data line (VDATA) is written to the gate of the DT. Meanwhile, the image information, i. e. the voltage 
from the data line, is also stored and stabilized on CS in one frame time, which is essential for the 
dynamic row-by-row scanning mode of present display technology. The DT is needed to drive each 
OLED pixel with the current from VDD. Figure 1b shows the optical image of the 2T1C structure. The 
total area of the single unit is 820 ×  820 μ m2, within which the OLED pixel occupies an area of 
480 ×  480 μ m2, with an aperture ratio (defined as the ratio of the OLED pixel area to the single unit area) 
of 34%. In principle, the aperture ratio could be further increased by optimizing layout designs and 
processing flows. Figure 1c shows a schematic cross-sectional perspective view of the single unit device 
structure fabricated on a quartz substrate with CVD-grown SWNT network channel, patterned Ti/Au 
(5 nm/30 nm) source and drain electrodes, Si3N4 (100 nm) gate dielectric, Ti/Au (10 nm/100 nm) top-gate 
electrodes, integrated green OLED, and a 300 nm SiO2 passivation layer.

To begin with, a uniform random SWNT network is grown on a quartz substrate on which ferritin 
has been deposited as catalyst21,24. Carbon feed stock into the thermal CVD is provided by flowing a mix-
ture of H2 and Ar through an ethanol bubbler. The density of the SWNTs can be controlled through the 
density of ferritin and the flow rates of H2 and Ar gases. A field-emission scanning electron microscope 
(FE-SEM) image (Fig. 2a) of a randomly grown SWNT network suggests that, the average length of the 
as-grown SWNTs is more than 10 μ m, far larger than the length (<2 μ m) of solution-based pre-separated 
SWNTs27,28. Probably because of the long SWNTs and small number of SWNT-SWNT contact junctions, 
the device mobility is larger than those reported TFTs made with solution-based separated SWNTs in 
Refs. 27 and 28. To reduce metallic SWNTs percolating pathways between the source and drain, the 
conventional striping technique21,26,36 is applied to pattern the random SWNT network into parallel 
strips with a width of 5 μ m and a spacing of 4 μ m, as shown in Fig. 2b. After the striping process, the 
SWNT-TFTs’ current on/off ratio is typically 105.

Figure  3a shows the top-gate configuration of the SWNT-TFTs. On the quartz substrate with 
CVD-grown random SWNT network, 5 nm Ti/30 nm Au are deposited using an electron-beam (e-beam) 
evaporator as the source and drain electrodes. After the striping process, 100 nm Si3N4 gate dielectric 
is deposited by plasma enhanced chemical vapor deposition (PECVD), followed by patterning of the 
top-gate electrode (10 nm Ti/100 nm Au). The SWNTs outside the channel region are removed by oxygen 
plasma etching. Figure 3b shows the transfer (ID-VG) characteristics (the red curve is plotted in the log 
scale and the blue curve is in the linear scale) and transconductance (gm-VG) characteristics (the black 
curve) of a typical ST with a channel length of L =  80 μ m and a channel width of W =  200 μ m. The device 
shows a typical n-type behavior and the on-current of 11.7 μ A at VD =  1 V and VG =  10 V. An on/off ratio 
greater than 105 and the peak transconductance of 2.9 μ S are obtained. It is known that SWNT-TFTs are 
typically p-type in ambient air, because of oxygen molecules or moisture adsorbed on the sidewalls of the 
SWNTs and/or SWNT-metal contacts37,38. However, in our top-gate configuration, n-type characteristics 
are generally observed mainly due to the desorption of oxygen molecules or moisture during deposition 
of Si3N4 gate dielectric24. Taking the electrostatic coupling between SWNTs27,39 into consideration, the 
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device mobility can be determined to be ~45 cm2V−1s−1, far superior to that of conventional organic 
TFTs9 ( ~4 cm2V−1s−1) and amorphous silicon TFTs6 (<1 cm2V−1s−1). The output characteristics of a 
typical TFT are plotted in Fig. 3c with VG varying from 10 to − 10 V in steps of − 5 V. As the transistor is 
fully turned off when VG ≤  0 V, the curves for VG =  0, − 5, and − 10 V are not distinguishable. Figure 3d 
summarizes the current on/off ratios and on-current values measured from all 36 STs in the driver cir-
cuit. The average values of the on-current and the on/off ratio are 11.83 μ A and 4.9 orders of magnitude, 
with the standard deviations of 4.27 μ A and 0.1 orders of magnitude, respectively. The small fluctuations 
suggest a highly uniform device performance among the 36 SWNT-TFTs.

After the driver circuit is fabricated, a 6 ×  6 AM OLED pixel array is introduced. A single unit of 
the 2T1C layout is shown in Fig.  1a and Fig. 1b. Before introduction of the OLED pixels, a layer of 
300 nm SiO2 is deposited to passivate and isolate the driver circuit from the OLED pixels, only leaving 
the pre-patterned ITO (used as the OLED anode) open in order to connect with the green OLED that is 
fabricated using the thermal evaporation technique. Figure 4a shows the optical image of a 6 ×  6 driver 
circuit array before introduction of the OLED pixels. In order to confirm the control capability of each 
single unit circuit, the transfer (IDD-VDATA) characteristics are measured and shown in Fig. 4b. The scan 
line (VSCAN) is biased at 10 V to turn on the ST so that the DT can be controlled by the signal (VDATA) 
from the data line. An excellent on/off ratio (~105) can be obtained. An on-current of 10 μ A can be 
achieved when VDD =  1 V, VDATA =  10 V, and VSCAN =  10 V. This on-current is sufficient to power on an 

Figure 1. Structure of the AM OLED driver circuit design and layout. (a) Schematic diagram of AM 
OLED display design based on a 2T1C single unit circuit, consisting of one ST, one DT, one CS, and one 
OLED pixel. (b) Optical image of a single AM OLED display unit. The total area of the single unit is 
820 ×  820 μ m2 including an OLED pixel area of 480 ×  480 μ m2. (c) A schematic cross-sectional perspective 
view of the single AM OLED display unit fabricated on a quartz substrate with CVD-grown SWNT network 
as the active channel, patterned Ti/Au source and drain electrodes, Si3N4 gate dielectric, Ti/Au top-gate 
electrode, integrated green OLED, and a SiO2 passivation layer.
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OLED pixel with the size of 480 μ m ×  480 μ m. The current driving capability of the driver circuit is a 
very important factor for the OLED display.

The performance of the OLED pixel is evaluated after a standard Tris(8-hydroxy-quinolinato) alumi-
num (Alq3) green OLED with multilayer configuration is fabricated. The OLED is of a layered structure 
of ITO/MoO3/N,N’-Bis(naphthalen-1-yl)-N,N’-bis(phenyl)-benzidine (NPB)/Alq3/LiF/Al, as illustrated 
in Fig. 5a. The OLED shows an ideal diode-like characteristic with turn-on voltage of 2.7 V, as shown in 
Fig. 5b. At the turn-on voltage, the turn-on current for a 480 μ m ×  480 μ m OLED pixel is 0.1 μ A (the cur-
rent density of 4.7 ×  10−4 mA/mm2), much smaller than the on-current (~10 μ A) of the single unit driver 
circuit (see Fig. 4b), suggesting that the single unit 2T1C driver circuit can fully drive an OLED pixel.

Finally, the AM OLED display with 6 ×  6 pixels driven by 72 SWNT-TFTs is demonstrated. An exter-
nal microcontroller unit (MCU) is used to generate the controlling signals VSCAN and image signals 
VDATA. The controlling signals switch on the STs to enable the image signals to transfer to the gates of 
the DTs and turn on them to pass IDD to further drive the OLED pixels. Figure 6a is a photo showing 
all 36 pixels are turned on when VSCAN =  10 V, VDATA =  10 V, and VDD =  5 V are applied for all scan, data, 
and power lines. It can be seen that all pixels are turned on although some pixels emit relatively weak 
luminance. The weak luminance pixels are likely caused by the OLED quality degradation arising from 
surface roughness of the OLED anode (ITO)40. Another possible reason for the luminance difference 
could be the fluctuations of the on-current in the SWNT-TFTs (see Fig. 3d). To show the performance of 
this OLED display, program codes based on the row-by-row scanning mode which is widely employed in 

Figure 2. Field-emission scanning electron microscope images of SWNT network. (a) A CVD as-grown 
random SWNT network on a quartz substrate. (b) Parallel SWNT strips with a width of 5 μ m.
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present display technology are developed and inputted into the external MCU to control the driver array. 
Figure 6b shows three letters “N”, “T”, and “U” on this OLED display in sequence. A video showing three 
running letters “N”, “T”, and “U” is provided in Supplementary online. To the best of our knowledge, this 
is the first demonstration of static and dynamic images implemented on an AM OLED display driven 
solely by a SWNT-TFT driver circuit.

In summary, we have successfully developed SWNT-TFT driver circuit for a 6 ×  6 static and dynamic 
AM OLED display. CVD-grown random SWNT network is used as the channels of the top-gated TFTs to 
achieve a highly uniform performance, i. e. the channel current on/off ratio of ~105 and device mobility 
of ~45 cm2V−1s−1. Our results confirm that the SWNT-TFT driver circuit is capable of controlling the 
OLED display. This work suggests that SWNT-based driver circuits could be of a great potential for 
future OLED displays.

Methods
Synthesis of random SWNT networks. The random SWNT networks used here are grown using 
thermal chemical vapor deposition on quartz substrates. The process flow is as follows: (1) A quartz 
substrate is cleaned by ultrasonication in acetone and IPA to remove organic contaminants and then 
dipped into a piranha solution (a 3:1 volumetric mixture of concentrated sulphuric acid to 30% hydrogen 
peroxide solution) for 30 min to make the quartz surface extremely hydrophilic; (2) The catalyst solution 
of ferritin (Aldrich; diluted with de-ionized water at a volumetric ratio of 1:80) is spin-coated on the 
quartz substrate; (3) The quartz substrate is heated to 800 °C in a quartz tube to oxidize ferritin into iron 
oxide nanoparticles; (4) The quartz tube is then further heated to 925 °C in 100 s.c.c.m. hydrogen gas 

Figure 3. Electrical properties of top-gated SWNT-TFTs used in the AM OLED driver circuit. (a) 
Schematic diagram of the top-gated SWNT-TFT fabricated on a quartz substrate with Ti/Au source and 
drain electrodes, Si3N4 gate dielectric, and Ti/Au top gate. (b) Transfer (ID-VG) characteristics (the red 
curve is plotted in the log scale and the blue curve is in the linear scale) and transconductance (gm-VG) 
characteristics (the black curve) of a typical ST (channel length L =  80 μ m, channel width W =  200 μ m) with 
VD =  1 V. (c) Output (ID-VD) characteristics of the same transistor with VG varying from 10 to − 10 V with 
− 5 V steps. (d) The current on/off ratios and on-current values of 36 STs (L =  80 μ m, W =  200 μ m).
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flow for 10 min to reduce the iron oxide to iron; (5) 30 s.c.c.m. argon gas and 15 s.c.c.m. hydrogen gas 
flow through an ethanol (carbon source) bubbler into the quartz tube while maintaining temperature 
(925 °C) for 15 min. The density of the random SWNTs is controllable through control of the concentra-
tion of ferritin solution and carrier gases (H2 and Ar) flow rates.

Fabrication of top-gated SWNT-TFT driver circuit. First, on the quartz substrate with randomly 
as-grown SWNT network, the windows for the source and drain electrodes of the SWNT-TFTs are 
defined using standard photolithography (AZ 5214 as photoresist) and then 5 nm Ti and 30 nm Au are 
deposited using an electron-beam evaporation system. After a lift-off process, another photolithography 

Figure 4. The SWNT-TFTs driver array with 2T1C configuration in each unit. (a) Photograph of the 
6 ×  6 driver array (0.5 ×  0.5 cm2) before introduction of OLED pixels. (b) Typical transfer (IDD-VDATA) 
characteristics of a single unit 2T1C circuit when VSCAN =  10 V, VDD =  1 V. Inset: schematic diagram of the 
single unit 2T1C circuit.

Figure 5. Structure and characteristics of a standard Alq3 green OLED. (a) Schematic diagram of the 
green OLED with the structure of ITO/MoO3/NPB/Alq3/LiF/Al. (b) The OLED luminance and current 
density versus the applied voltage on the OLED.
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process and oxygen plasma reactive-ion etching (200 mTorr, 20 s.c.c.m. O2 flow, 100 W radio frequency 
power) are applied to pattern the SWNT network into parallel strips to achieve a high on/off ratio of the 
SWNT-TFTs. In order to isolate the SWNT-TFTs from each other, oxygen plasma reactive-ion etching 
with the same conditions is employed again to clean up any SWNTs outside the channel regions which 
are protected by a patterned photoresist layer. Then, a 100 nm Si3N4 gate dielectric layer is deposited on 
the whole substrate by plasma enhanced chemical vapor deposition (PECVD). SiH4, NH3 and N2 (at the 
flow rates of 100, 20, 600 s.c.c.m., respectively) are used as the reaction gases and the radio frequency 
power is set at a low value of 20 W to minimize damage to the SWNT channels. With a high pressure of 
1 Torr and a large N2 flow, the resultant plasma is cold and mild and the low plasma density results in a 
low deposition rate of 0.4 nm/s. After the gate dielectric deposition, the vias for interlayer interconnects 
are defined by photolithography and hydrofluoric (HF) acid etching (8 s in a 1:20 volumetric mixture 
of concentrated HF acid to de-ionized water). After via etching, the interlayer interconnects (10 nm 
Ti/90 nm Au) are deposited into the vias, followed by a lift-off process. Finally, the gate electrodes (10 nm 
Ti/100 nm Au) and interconnects (between the STs and the DTs) are patterned.

6 × 6 OLED pixels integrated with the top-gated SWNT-TFT driver circuit. Before OLED fab-
rication, the top-gated SWNT-TFT driver circuit is passivated with a 300 nm SiO2 layer, leaving only the 
OLED anode area open in each unit. After passivation, 300 nm indium-tin oxide (ITO) is deposited as 
OLED anodes using a radio frequency sputtering system. Then, a standard Tris(8-hydroxy-quinolinato) 
aluminum (Alq3) green OLED with structure of ITO/MoO3 [5 nm]/NPB [80 nm]/Alq3 [60 nm]/LiF 
[1 nm]/Al [150 nm] is fabricated using a thermal evaporator.

Figure 6. Display demonstration of the 6 × 6 AM OLED pixels driven by 72 SWNT-TFTs. (a) A photo 
showing the 36 pixels turned on under VSCAN =  10 V, VDATA =  10 V, and VDD =  5 V. (b) The letters “N”, “T”, 
and “U” are displayed sequentially on this OLED display. A video showing three running letters “N”, “T”, 
and “U” can be found in Supplementary online.
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Device and circuit characterizations. The morphology of random SWNT networks is character-
ized using a field-emission scanning electron microscopy (LEO 1550 Gemini SEM). The direct-current 
measurements of SWNT-TFTs and single unit driving circuit are carried out in air using a semicon-
ductor parameter analyzer (Agilent, B1500A). The performances of OLED pixels are measured using 
LS-110 luminance meter (Konica Minolta). An external microcontroller unit (Arduino Duemilanove 
ATmega328) is used to input controlling and image signals to the SWNT-TFT driver circuit to create 
static and dynamic images on the OLED display.
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