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Abstract: Lead halide perovskites (LHPs) have made impressive progress in solid-state opto-
electronics by virtue of their excellent electronic and optical features. In the past few years, the
light-emitting diode (LED) adopting LHP emitters have reached a comparable level of external
quantum efficiency (EQE) with organic and colloidal quantum dot LED counterparts. Apart from
solution-processing, all-inorganic CsPbX3 LEDs can also be fabricated using thermal evaporation
in a single run without breaking vacuum. In principle, all-evaporated LHP-LEDs in a vacuum
demonstrate good uniformity and reliability in a large-area, especially full color applications
where color pixelation is necessary, although their performance is still lower than that of the
devices using hybrid film depositions. Herein, the understanding of vacuum-evaporated LHPs
and their resulting LEDs, including the materials, film deposition and device issues, are reviewed.
Additionally, guidelines toward high-performance devices and their prospects in the future are
included.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

As new generation of semiconductor materials, the lead halide perovskite (LHP) family has
proven their worth in optoelectronics, especially in light-emitting diodes (LEDs), by virtue
of the achievements reached in the past few years [1–20]. Compared to their counterparts,
namely, organic LEDs (OLEDs) and semiconductor colloidal quantum dot LEDs (QD-LEDs),
LHP-LEDs demonstrate a competitive or even a higher level of performance, including their high
brightness, high external quantum efficiency (EQE) and ultra-wide color gamut [1–13,18–22].
Generally, the LHP emissive layer is deposited onto a substrate by solution-processing, in
principle, which is supposed to be an advantageous for low manufacturing costs [1–13,18–20,23].
As a new generation of fantastic display technologies, the impressive progress of LHP-LEDs
achieved in the laboratory means that industry-scale manufacturing in the next few years is
critical because of the intensive homogenization competition from OLEDs, QD-LEDs and other
emerging display technologies. However, solution-processing also plays an insurmountable role
in hindering the further improvement of LHP-LEDs whose structural design and fabrication
were severely restricted by the orthogonal selection of solvents [24–27]. Almost all the so-called
solution-processed LHP-LEDs, especially high-performance LHP-LEDs, still require a high
vacuum chamber for the deposition of subsequent functional layers [1–13,19,20,23]. Thus far,
most device research actually concentrates on the emissive materials and their film deposition.
An industry-scale LED display always requires that all pixels have a super-high uniformity over a
large area, which is still a challenge for laboratory-scale solution-processing as a film deposition
technology.
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Fortunately, apart from solution processing, some LHPs can also be deposited using thermal
evaporation in a vacuum chamber, which means good compatibility with the well-established
all-evaporated LED industry [28–34]. The vacuum-evaporated LHP emissive films have an
innate advantage in their uniformity of a large-area film, which is essential for LED displays.
Among all LHPs, all-inorganic CsPbX3, especially CsPbBr3, demonstrated the best thermal
evaporation in vacuum and is thereafter the main covering material in this review [19,28–32,34].
All-inorganic CsPbBr3 demonstrates some special features that differ from other LHP family
members, for instance, the high thermal stability of all-inorganic CsPbX3 make it a candidate
for high driving-current, high brightness LEDs and even laser diodes and other current-driven
applications in the future [35–37]. In the past few years, vacuum-evaporated CsPbBr3 emissive
films have achieved impressive progress in LEDs; however, these films are still dominated
by solution-processed counterparts [28–34,38,39]. Statistically, the performance of LEDs
containing a vacuum-evaporated CsPbBr3 emissive layer still falls far behind that of devices with
a solution-processed CsPbBr3 emissive layer. (Table 1)

Table 1. Comparison of the key performance of LEDs with a LHP emissive layer deposited using
vacuum-evaporation and solution-processing [22, 40, 41].

In this review, some up-to-date progress achieved in the LEDs using a vacuum-evaporated LHP
emissive layer, especially CsPbBr3, is provided. Insights into the film deposition, device structure
design and fabrication, and guidelines for high-performance vacuum-evaporated LHP-LEDs are
presented. This review can possibly trigger subsequent studies or new possibilities in LHP-LEDs
and other related subfields.

2. Fundamental properties of LHPs for LEDs

In general, LHPs are typical ionic compounds that can be expressed as (R)2(A)n−1BnX3n+1,
where site A is a monovalent cation, e.g., formamidinium (FA+), methylammonium (MA+), Cs+
and their combination; site B is Pb2+; and site X is Cl−, Br−, I− and their combination [42–46].
In the LHP crystal structure, the [PbX6]4− octahedron formed by halogen anions is the core
fragment, and the pivot site is always Pb2+. When n=1, a monolayer corner-sharing [PbX6]4−

octahedral forms a 2D perovskite sheet that is sandwiched by two organic ligand layers (R)
(Fig. 1(a)) [43,44,47]. As the n value increases, the formula can be simplified to APbX3, which
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corresponds to classical 3D LHPs (Fig. 1(a)) [43,45,47]. LHPs deposited in a vacuum chamber
by thermal evaporation are generally 3D crystalline structures based on elemental corner-sharing
[PbX6]4− octahedra because there is no symmetry breaking factor. For example, the molecular
spacers used in solution-proceeded 2D LHPs can block the assembly of elemental corner-sharing
[PbX6]4− octahedra out of plane [48].

Fig. 1. (a) Schematic of 3D and quasi-2D lead halide perovskites. Reproduced with
permission [47] Copyright © 2015 American Chemical Society. (b) Schematic energy
diagram of lead halide perovskites and their corresponding total density of states (TDOS)
and the partial density of states (PDOS). Reproduced with permission [49] Copyright ©
2017 American Chemical Society. (c) CIE chromaticity coordinates comparison among
CsPbX3 NCs (dark points), the consumer LCD TVs (dashed white line) and the color
standards of TVs (NTSC) (solid white line). Reproduced with permission [50] Copyright ©
2017 American Association for the Advancement of Science. (d) The dependence of PL
linewidth of FAPbI3 on temperature. Reproduced with permission [51] Copyright © 2016
The Author(s).

The energy diagram of emitters is a very important factor for the resulting LEDs because the
related bandgap and states will influence the optical properties, and the energy level position of
the conductive band (CV) and valence band (VB) will determine the charge carrier injection and
selection of matched functional layers. The energy diagrams of LHPs are mainly determined by
the orbital hybridization of lead and halogen (Fig. 1(b)) [11,49,52–54]. Regarding CB, the Pb-6p
orbitals play a primary role compared to the slight contribution of the np orbitals of halogens
(Cl-3p, Br-4p, I-5p) (Fig. 1(b)) [49,55]. In contrast, in the VB, which is hybridized by the X-np
orbitals and the Pb-6s orbitals, the contribution of halogens is higher; thus, the energy level of VB
and the resulting band gap can be widely tuned by adopting different halogen species (Fig. 1(b))
[49,54,56]. In addition to the single halogen species CsPbCl3, CsPbBr3 and CsPbI3 with a fixed
band gap, alloyed halide species can also take site X to form CsPbClxBryIz (x+ y+z=3) [55,57].
By changing the ratio of halogen species, the band gap can be tuned over 1 eV; correspondingly,
the light emission shifts continuously from the near-infrared to the near-ultraviolet [11,58–60].
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Along with their narrow linewidth, the LHP family demonstrates an ultrawide color gamut over
the NSTC standards, which can reappear as almost all natural color in their resulting ‘true’
color displays (Fig. 1(c)) [50,61,62]. The strong polar X-Pb bond in LHPs leads to a Fröhlich
coupling between charge carriers and longitudinal optical phonons, which is supposed to be the
predominant role in determining the linewidth broadening at room temperature [51,63,64]. In
comparison, other factors play minor roles in linewidth broadening. This is the reason for bulky
LHPs and their nanocrystalline counterparts to demonstrate comparable linewidths and shapes of
emissive spectra (Fig. 1(d)) [51–53,63,65,66]. In a vacuum-evaporated LHP film, the emissive
spectra are almost the same.

The most attractive feature of LHPs, unlike typical semiconductors, is their high defect
tolerance in light generation. Mostly, the bandgap of normal semiconductors is the energy
difference from the top of the bonding VB to the bottom of the antibonding CB. In contrast, both
the VB and CB of LHPs are antibonding (Fig. 1(b)) [67,68]. Antibonding means a raised VB
maximum, even lying above the level of the X-np and Pb-6s orbitals. Defect states therefore lie
within the VB [68,69]. Thus, these tolerated defects do not lead to any significant influence of
the interband electron transition and resulting light generation [49,52,53,65,70,71]. However,
there are still some extrinsic deep defect states caused by vacancies, halide interstitials and others
[72,73]. In the LHPs deposited using vacuum thermal evaporation, there are more defects because
of the excess precursors, by-products and grain boundaries during the deposition compared to
solution-proceeded LHP NCs with the passivation of ligands [32,74].

In the LHPs deposited using thermal evaporation in vacuum, they are polycrystalline; thus,
without any effect of spatial confinement, the LHP excitons are normally Wanier-Mott type with a
low binding energy down to dozens of meV [34,55,76,77]. These excitons have a high possibility
of dissociating into free charges compared to the radiative recombination [78,79]. Because
of the low overlap of wavefunctions between holes and electrons and their high mobilities,
radiative recombination is a slow second-order bimolecular process (Fig. 2(a)) [6,75,80,81]. The
many defects formed during the thermal evaporation also make a significant contribution to
the consumption of excitons by a prompt first-order trap mediated non-radiative recombination
[6,75,80–82]. Because of the low exciton binding energy, in LHP-LEDs the applied external
electric field provides an additional pathway of consuming excitons by dissociating them into
free-charge carriers [83,84]. Therefore, an effective enhancement of the crystalline quality of
deposited LHPs, along with charge carrier confinement, is required for highly efficient light
emission.

Differing from the optically-excited applications, as a current-driven structure, good electric
properties are essential for LEDs [18–20]. LHPs demonstrate superior charge carrier transport
features, including ambipolar character, high mobility up to thousands of cm2 V−1s−1 and
long lifetime charge carries [51,85–87]. The charge carrier flows through the 3D LHPs as a
large polaron with radii lager than 40-50 Å, which exceeds the lattice constant and is immune
from scattering with defects, other carriers, and even phonons [88–90]. Comparable hole and
electron mobilities are supposed to be important merits for LHP-LEDs, which always requires
balanced hole and electron injection [6,90,91]. In addition, intrinsic ion migration also makes a
nonnegligible contribution to charge transport, which can be observed as hysteresis dependence
of driving voltage and current [27,60,84,92]. Although this feature can be used to heal some
defects and lower energy barrier for charge carrier injection, it still inevitably leads to concerns
about the device stability of LHP-LEDs [93–97]. The VB of LHPs is deep and can be adjusted
over 1 eV by changing halogen species, which makes the hole injection difficult, especially the
blue-emitting ones (Fig. 2(b)) [49,56]. Thus, it is challenging to find matched hole transport
materials with deep HOMO level, especially semiconductive polymer films, which require an
additional passivation treatment before the solution-based deposition of LHPs [6,7,17,98].
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Fig. 2. (a) Initial time PL intensity (IPL(t= 0)) as a function of the charge carrier density in
PL. Reproduced with permission [6] Copyright © 2018 American Chemical Society. (b)
Schematic energy diagram of metal halide perovskites. Reproduced with permission [56]
Copyright © 2019 The Author(s). (c) Schematic diagram of CsPbBr3 deposition using
vacuum thermal evaporation. (d) Schematic illustration of slow bimolecular recombination.
Reproduced with permission [75] Copyright © 2017 The Author(s). (e) Schematic illustration
of charge carrier confinement and subsequent recombination in the perovskite multiple
quantum wells. Reproduced with permission [75] Copyright © 2017 The Author(s).

3. Vacuum evaporation of LHPs

The vacuum evaporation techniques for thin-film deposition include thermal evaporation, electron
beam evaporation, sputtering, molecular beam epitaxy, atomic layer deposition and others. With
the consideration of the comparable device structures and fabrication of OLEDs, QD-LEDs and
LHP-LEDs and the common functional materials they shared, until now, the vacuum thermal
evaporation is the most commonly used technique in the LHP-LED fabrication. In principle,
most members of the LHP family can be thermally evaporated [29,48,74,99,100]. Until now,
most thermally evaporated LHP films have been used as absorbers in solar cells [99–102].
Organic-inorganic hybrid LHPs are not good candidate materials for vacuum thermal evaporation
because of their lower thermal stability in vacuum, which will degrade rather than evaporate with
heating [103,104]. For multisource co-evaporation, the organometallic precursors, especially
MABr, are difficult to handle because of their high vapor pressure, and a serious contamination
will occur [105–107]. In comparison, all-inorganic LHPs and their precursors demonstrate much
better thermal evaporation in vacuum, and their films can be deposited by different thermal
evaporation scenarios [28,34,74,96]. The CsPbX3 can be deposited by multisource co-evaporation
or the subsequent evaporation of the two precursors CsX and PbX2 [28–30,32,74]. Additionally,
it can also be deposited by the single-source evaporation of presynthesized raw CsPbX3 [34,108].
For both scenarios, most deposited CsPbX3 will be subjected to posttreatment for healing defects
[28–30,32,34,74]. Normally, thermal annealing and solvent vapour annealing are effective
treatments for enhancing the crystal quality of a deposited LHP film [28–30,32,34,74]. Moreover,
some additives, especially ion liquids, have also demonstrated great defect elimination capability
[109,110].
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3.1. Multisource evaporation

All-inorganic LHPs can be deposited by alternately evaporating two precursors, CsX and PbX2
(Fig. 2(c)) [28–30,32,74]. By virtue of high ion migration, the heterointerface between two
adjacent CsBr and PbBr2 layers will be blurred and even disappear to produce CsPbBr3 domains
[29,74,84]. However, the ratio of the two precursors is difficult to handle in this operation. The
two precursors can also form other LHP species with different stoichiometric ratios, such as
CsPb2Br5 and Cs4PbBr6 [30,74,111]. Therefore, the deposited film could lead to a blend of
several LHP species and excess precursors rather than the high purity CsPbBr3. Clearly, these
by-products and excess precursor impurities will result in many defects, which leads to a low
level of luminous efficiency of the LHP film and their resulting LEDs [30,74,111]. Moreover, this
nonuniform emissive film contains different domains of LHP specie domains, which will make
the charge carrier transport mechanism more complicated, resulting in an even worse device
performance [30,74,111].

Alternatively, the CsPbBr3 film can be deposited by simultaneous co-evaporation of two
precursors CsBr and PbBr2 in vacuum [28,48,99]. These two precursors would mix uniformly at
the nanoscale during film deposition, and their ratio can be controlled in real time by adjusting
the evaporation rate of each precursor. Similarly, two or more different PbX2 precursors can also
be simultaneously co-evaporated with CsX to deposit alloyed halide perovskite films [112]. In
principle, the film deposited using this scenario should demonstrate an improved film uniformity.
However, on the practical level, precise control of the ratio among different precursors by
adjusting the corresponding evaporation rate is difficult over the whole duration of LHP film
deposition. Thus, it is still a major challenge to obtain a highly crystalline structure of deposited
LHPs. In solution-processed film deposition, precursors will spontaneously react with others
with a precise stoichiometric ratio, and in this dynamic growth process, excess reactants will be
removed easily by the solvent [113,114]. However, in vacuum thermal evaporation, the excess
precursors deposited onto the substrate cannot be removed without any assistance, which will
exist as impurities or form other LHP species such as Cs4PbX6 [30,74,111].

3.2. Single-source evaporation

In addition to the multisource co-evaporation of precursors, the emissive films can also be
deposited by the single-source evaporation of presynthesized CsPbX3 in high vacuum, which
can fix the stoichiometry problem [34,108]. In comparison to organic-inorganic hybrid LHPs,
all-inorganic CsPbX3 exhibits great thermal stability, making it more suitable for thermal
evaporation [35–37]. This good thermal stability depends on the vacuum atmosphere [36]. At a
low vacuum level, CsPbBr3 will decompose instead of evaporating, and at a high vacuum level
of 10−5 Pa, the perovskite structure of CsPbBr3 remains stable with increasing temperature until
melting and then evaporating [115–119]. However, it has been reported that at high temperature,
highly activated ion migration will lead to some CsBr-rich and PbBr2-rich domains before the
evaporation [34]. Therefore, at the macroscale, the deposited film still follows the stoichiometry
of CsPbBr3; however, their microscopic perovskite crystal structure is lost. Based on the identical
feature of ion migration, after posttreatment, all by-products will convert back to CsPbBr3
[34,36,120]. It has been observed through in situ high-resolution TEM that the crystal structure
of CSPbBr3 is destroyed at a high temperature (over 800 °C) and then recovers completely as the
temperature is decreased [36].

The vacuum-evaporated emissive films are polycrystalline and contain many CsPbBr3 and
other LHP species grains, whose boundaries and impurities would mediate a prompt nonradiative
recombination of excitons as trap states [34,65,70,82]. Due to the high defect tolerance, these
LHP films still demonstrate a high level of light emission [28–34,52]. However, even if the
deposited CsPbBr3 film is a perfect single crystal without any defects, it is still difficult to
obtain efficient light emission as high as that of the nanocrystalline emitter counterparts used in
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LEDs. Because of the negligible wavefunction overlap of electrons and holes, there is a small
chance that opposite charge carriers will meet each other, which means a low-efficiency radiative
recombination for LEDs (Fig. 2(d)) [6,75,80,81]. Thus, the LHP-LEDs are dominated by LHP
nanocrystals, quantum dots, quantum wells, nanoplatelets and other nanostructures that confine
electrons and holes in a small domain with dimensions of nanometers to facilitate their radiative
recombination (Fig. 2(e)) [1–17]. Without effective charge carrier confinement, sufficient exciton
binding energy and effective passivation of surface defects, it is difficult to further improve the
light emission to a comparable level of solution-processed LHP NCs [1–17,28–33,75,80,81].

3.3. Role of the substrate

In most crystal growth, the substrate plays an important, even a critical-level role. The LHP
vapour deposits onto an organic semiconductor substrate to form a solid thin film, which is also
a crystallization process; thus the role played by organic semiconductor substrate during the
crystal growth is considerable. Until now, there are still a few works focusing onto this topic
[99,121]. The surface potential of organic substrate was proved to play an important role in the
crystallization during the solution-processed film deposition [122,123]. A solution-processed
LHP film deposited on top of a hydrophilic PEDOT:PSS substrate demonstrated a smaller
grain compared to hydrophobic substrates [122,123]. In the vacuum-evaporated LHPs, the
role of organic semiconductor substrate played in film deposition is still a complicated issue.
Different organic semiconductor substrates show significant variety in LHP film composition
and morphology [99,121]. It is confirmed that without the orthorhombic limitation of solvent,
the substrate selection and the device structure design of the whole LHP-LED are more flexible.

Fig. 3. (a) In situ TEM image of CsPbBr3 nanocrystal in high vacuum (1.2×10−5 Pa).
Consecutive clip images at 690 K from 0 to 10 s. Scale bars: 10 nm. Reproduced with
permission [36] Copyright © 2019 Author(s). (b) Schematic device architecture of the
all-vacuum-evaporated perovskite LEDs. Reproduced with permission [33] Copyright ©
2020 Author(s). (c) Schematic of doping effect at the interface caused by ion migration
under applied electric field. Reproduced with permission [124] Copyright © 2018 American
Chemical Society. (d) TEM image of CsPbBr3 nanocrystals embedded Cs4PbBr6 matrix.
Reproduced with permission [125] Copyright © 2018 The Authors.
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The complicated influences on organic semiconductor substrate caused by the subsequent
solution-processing onto it are also eliminated completely.

3.4. In situ treatment and post treatment of LHP films

In single-source vacuum thermal evaporation, the macroscale-ordered structure of CsPbBr3 will
be destroyed, and the vapor should be a nanoscale cluster of CsPbBr3 (Fig. 3(a)). Because of the
enhanced ion migration at high temperature, some CsBr-rich and PbBr2-rich domains form in
the raw CsPbBr3 [34]. The deposited LHP grains are much smaller than the solution-processed
grains, which means more boundaries [126]. Thus, a treatment is required to improve the crystal
quality of the deposited LHPs. Thermal annealing is a simple and effective post-treatment for
enhancing the crystalline quality of the deposited CsPbBr3 film [48,100,127]. However, if the
annealing temperature is too high, the deposited CsPbBr3 films will lose their light emission [34].
It is noted that there is a significant discrepancy about whether thermal annealing can enhance
the light emission of a vacuum-evaporated CsPbBr3 film, which means that there is still an
unknown mechanism about the crystallization of LHP during thermal evaporation that needs to be
uncovered [34,48]. In situ temperature management of substrate was proved to make a significant
influence on the size of the deposited LHP crystal [121]. As decreasing temperature from room
temperature to -2 °C, the deposited LHP grain size increases from 100 nm to micrometer level
[121]. In addition, solvent vapor annealing, ion liquid additives and precursors like PEABr were
also used to heal the defects of deposited LHP [74,100]. Until now, most treatment works still
concentrated onto the LHP absorber in solar cells.

4. LEDs exploiting vacuum-evaporated LHP emitters

In a sense, solution-processed LHP-LEDs can be considered as a derivative of LHP photovoltaics
and QD-LEDs, which share almost the same device structure, even identical functional layers
(Fig. 3(b)) [1–17,128]. Similarly, vacuum-evaporated LHP-LEDs also adopt the device structure
frame of solution-processed ones, including the ITO anode modification layer of PEDOT:PSS
and a semiconductor polymer hole transport layer [28–34]. A highly conductive PEDOT:PSS
film is an excellent ITO anode modification layer used in a variety of thin-film optoelectronic
applications [74]. Generally, a semiconductor polymer hole transport layer, such as poly-TPD
and PVK, is believed to work as an energy steppingstone to facilitate the injection of holes
into the LHP emissive layer [28]. Because of the metallic feature, PEDOT:PSS is supposed
to be an exciton quencher of the adhesive emissive layer and the semiconductor polymer hole
transport layer also worked as a buffer layer for eliminating the quenching of LHPs [129,130].
However, without any semiconductor polymer hole transport layer between the PEDOT:PSS and
LHP layers, some LHP-LEDs still demonstrate high brightness, low driving voltages and high
EQEs [30,34,74]. Because of the high ion migration of LHPs, a p-type doping layer will be
formed at the PEDOP:PSS/LHP interface facilitated by external bias in LEDs [84,124,131,132].
This p-type doping layer will effectively decrease the hole injection barrier from PEDOT:PSS
into LHPs, leading to a low driving voltage, although their VB is much deeper than the Fermi
level of PEDOP:PSS (Fig. 3(c)) [84,124,131,132]. On the contrary, in some LHP-LEDs using
a vacuum-evaporated CsPbBr3 emissive layer deposited onto a PEDOT:PSS film, the driving
voltage is much higher, and the origin is probably the low conductivity of by-product Cs4PbBr6
[30,74,111].

To achieve highly efficient LHP-LEDs, balanced charge carrier injection is essential. To balance
superior hole injection, efficient electron injection is required. For the cathode side, a small
molecular electron transport layer, an electron injection or interfacial buffer layer and a thin-film
metal cathode were used [28–34]. Because the CB of LHPs is deep, most organic electron
transport materials can match the energy level alignment for barrier-free electron injection well
[11,49,52–54,56]. However, the electron mobility of most organic electron transport materials is
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orders of magnitude lower than that of LHPs [6]. Using n-type doping, the conductivity of the
electron transport layer can be enhanced significantly [133,134]. However, small-size n-type
dopants such as lithium, cesium and compound Cs2CO3 would diffuse into the emissive layer
[135,136]. Whether these hot atoms and ions heal or damage the crystal structure of the deposited
LHPs is still unknown. To replace Cs and Cs2CO3, some organic n-type dopants like Lewis acids
can be used for LHP-LEDs. Moreover, the evaporation temperatures of this kind of inorganic
n-type dopant, LiF interfacial buffer layer and metal electrode film are much higher than those of
other materials, which would lead to thermal annealing of the deposited LHPs.

Alternatively, some inverted structures were adopted in solution-processed LHP-LEDs, which
can fix the unmatched electron injection. There are a few electron transport polymers that can
be used in inverted structure LHP-LEDs, the most used electron transport layer is a solution-
processed ZnO nanocrystal film on an ITO cathode substrate [137–140]. To modify the energy
level alignment and eliminate potential quenching caused by ZnO, an ultrathin PEIE film is
used before LHP film deposition [139,140]. Subsequently, an organic hole transport layer CBP
and hole injection layer MoO3 are evaporated [140,141]. To prevent the high temperature from
evaporating MoO3, an organic p-type dopant F4-TCNQ or HAT-CN can be used for efficient hole
injection, which can be evaporated at a much lower temperature [136]. Thus far, there are still no
vacuum-evaporated LHP-LEDs using an inverted structure.

For most LHP-LEDs using a vacuum-evaporated emissive layer, solution-processed deposition
of other functional layers was still used, which abandoned some advantages of the vacuum-
evaporated LHPs in LEDs [28–34]. The energy level of different LHPs can be tuned to over 1 eV
by using different halogen species [56]. To date, only a few semiconductor polymer candidates
can be used in solution-processed LEDs; however, the orthorhombic issue is a further limitation
[1–17]. Thus, on the practical level, it is difficult to determine the optimized device structure
for all, even only one, LHP species emitter in LEDs. All-evaporated LHP-LEDs in a single run
without breaking vacuum may be an option for further improvement of the device performance
because of their good reliability and reproducibility. Without the limitation of solution processing
in device fabrication, the device structure design, the selection of matched functional layers and
reliability control of all-evaporated LHP-LEDs in vacuum are easy to handle. However, until
now, only a few all-evaporated devices in vacuum have been reported, and their performance is
still far behind that of the devices using a solution-processed LHP emissive layer [29,119].

5. Summary and future prospects

Vacuum-evaporated LHPs have achieved impressive progress in solar cells; however, they are still
dominated by their solution-processed counterparts in LEDs. In principle, the area of LHP-LED
panel fabricated using vacuum thermal evaporation can reach a comparable level of commercial
OLED displays, though most current research works still focus on small-area devices. Among all
LHP family members, all-inorganic CsPbX3 is more suitable for vacuum thermal evaporation;
CsPbBr3 is the most intensively studied emitter used for LEDs; and the maximum brightness
and EQE can reach 15,745 cd m−2 and 8.86%, respectively [38]. For the vacuum-evaporated
LHP-LEDs, the predominant consideration is the deposition of highly efficient LHP emissive
layer. The CsPbBr3 film can be deposited by using the sequential evaporation or co-evaporation
of two precursors of CsBr and PbBr2; however, their molar ratio is difficult to handle to obtain
a stoichiometric CsPbBr3 during the whole deposition process. Alternatively, pre-synthesized
CsPbBr3 can be directly evaporated as the emissive film. During evaporation, the crystal structure
and stoichiometric ratio of CsPbBr3 cannot be controlled uniformly, and some CsBr-rich and
PbBr2-rich domains will form because of thermally facilitated ion migration. Thus, even though
raw CsPbBr3 is highly crystalline, the deposited film is polycrystalline and contains several
components.



Review Vol. 12, No. 1 / 1 Jan 2022 / Optical Materials Express 265

Currently, to achieve comparable or even higher performance from vacuum-evaporated LHP-
LEDs with respect to the solution-processed device counterparts, the predominant challenge
is a highly efficient LHP emissive film deposited using vacuum thermal evaporation. There
are two main reasons that limit the light emitting efficiency of vacuum-evaporated LHP film.
Firstly, the LHP crystal structure and even the ABX3 stoichiometric ratio are destroyed during
the thermal evaporation, and the resulting LHP emissive film deposited onto substrates are
low-quality polycrystalline, which contains high density of defects. Therefore, obtaining a
highly-crystalline LHP emissive film is essential. An in situ treatment, such as substrate heating,
during the LHP film deposition could be helpful to improve their crystal quality. By virtue of ion
migration of LHP, a post-treatment, including thermal annealing, solvent vapour annealing and
using additives, can be used for healing defects of the deposited emissive film. However, these
kinds of post-treatment steps will require to break vacuum, which trades off the advantage of
vacuum-evaporated LHP-LEDs. Additionally, the substrate on which LHP film is deposited is
also an important factor in determining the emissive film quality. Secondly, the low-efficiency
light emission is determined by their delocalized charge carriers and slow bimolecular radiative
recombination even in a vacuum-evaporated LHP single crystal. Based on the same idea of the
solution-processed LHP-LEDs, a feasible scenario is the nanocrystallization of evaporated LHPs.
The simultaneous co-evaporation of LHPs with a spacer could be a potential pathway to obtain
monocrystalline LHPs, which is similar to the CsPbBr3/Cs4PbBr6 composite structure (Fig. 3(d))
[125]. For selecting the spacer material, there are three requirements: First, the spacers should
be a good evaporating material such as small molecular semiconductors. Second, the spacers
should control the dimension of LHP grains deposited. And third, the spacers should passivate
the LHP grain boundary defects.

In principle, solution-processed LHP-LEDs have a relative advantage in device fabrication
cost because high vacuum is not essential for emissive LHP layer deposition. Until now, the
performance of all-solution processed LHP-LEDs has still fallen behind their counterparts using
hybrid film depositions of vacuum thermal evaporation and solution processing. However, it
is worth emphasizing that one of the key features of vacuum-evaporated LHP-LEDs is their
flexibility in device structure design, fabrication and optimization, especially for large-area
applications. In this sense, an all-vacuum-evaporated LHP-LED is the most appropriate device
which demonstrates this key feature. Although the solution-processed LHPs have made a
breakthrough in large-area monochrome LEDs, the all-vacuum-evaporated LHP-LEDs will
still play a predominant role in full color display requiring a highly uniform pattern of pixels.
Moreover, all-evaporated LHP-LEDs in vacuum hardly output any toxic waste solution during
manufacturing, which is more environmentally friendly and should be taken into consideration in
terms of cost.
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