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Metasurfaces generate desired electromagnetic wavefronts using sub-wavelength structures that are much thinner than
conventional optical tools. However, their typical design method is based on trial and error, which is adversely inefficient
in terms of the consumed time and computational power. This paper proposes and demonstrates deep-learning-enabled
rapid prediction of the full electromagnetic near-field response and inverse prediction of the metasurfaces from desired
wavefronts to obtain direct and rapid designs. The proposed encoder–decoder neural network was tested for different
metasurface design configurations. This approach overcomes the common issue of predicting only the transmission
spectra, a critical limitation of the previous reports of deep-learning-based solutions. Our deep-learning-empowered
near-field model can conveniently be used as a rapid simulation tool for metasurface analyses as well as for their direct
rapid design. © 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
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1. INTRODUCTION

Metasurfaces are artificially designed electromagnetic (EM)
structures that allow the realization and engineering of a desired
wavefront profile using sub-wavelength metaunits. An array of
different orientations of such metaunits, each of which essentially
acts as a scatterer, forms an optical structure that is ultra-thin
compared to its counterpart conventional optical tools [1–4]. The
interactions of light with the sub-wavelength units make it possible
to control the phase and magnitude of the scattered light [5,6].
Therefore, metasurfaces are competent optical devices that can be
utilized for numerous tasks including image formation, focusing,
optical vortex generation, spectroscopy, and augmented reality
[7–9]. The metaunits composed of all-dielectric materials have
been utilized in recent metasurface architectures. These dielectric
metaunits are shown to yield minor losses across a wide range of
frequencies compared to designs that adopt metal-based units
[10–12].

As much as metasurface designs offer benefits in terms of opti-
cal performance given their thickness, the design process can be
cumbersome and is usually not straightforward. A mainstream
approach in their design is to “phase-match” the responses of con-
secutive units as a designer seeks to achieve the right interference of

the EM waves [13,14]. However, this requires a repetitive process
of trial and error. Also, the EM response of a surface may not be a
direct superposition of the individual units but rather a collective
EM response if there exist inter-coupling effects among the metau-
nits [15]. In general, one typically needs to anticipate a design with
intuition and optimize it with the metaunit set that is predefined
or, alternatively, to propose an analytical solution for the model.
Nevertheless, finding an analytical solution for an arbitrary design
can be practically impossible. Moreover, the EM response of even
a single metaunit may become unpredictable pretty quickly with
minor changes in the geometry and materials of the units. These
give rise to a strong motivation for the investigation of efficient
tools capable of finding the EM response. Conventionally, iterative
numerical methods and simulation techniques, including FEM
(finite element method), FDTD (finite difference time domain),
and FIT (finite integration technique) are utilized [16]. These
methods provide accurate and reliable solutions even for complex
structures. Nonetheless, they are basically brute force methods
that require immense computational resources to reach a solution
[17,18]. As the conventional metasurface design process relies on
trial and error, the inefficiency of the numerical methods makes
it considerably time consuming for the designer, and requires an
experienced metasurface designer in most cases.
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In this paper, we propose and demonstrate a deep-learning-
based solution to overcome these disadvantages of conventional
methods. Deep neural networks have shown promising results for
solving many scientific and engineering problems, including the
prediction of the EM response of metasurfaces [19–23]. However,
these previous studies have their specific limitations. Previously,
the analysis of the EM response of metasurfaces was focused only
on the metaunits’ spectrum response. Additionally, they were
limited to a small number of discrete metaunits. This decreases
the total number of possible designs but makes it easier to generate
a dataset and train a model. Moreover, the inter-coupling effects
of the metastructures were generally fully omitted or confined to
one axis of interaction only [23]. Overall, these previous studies do
not provide full EM information for a complex and high degree-
of-freedom (DOF) design that accounts for non-constrained
inter-coupling effects. Thus, they cannot offer a fully capable alter-
native for numerical solvers such as FDTD, for example, for the
implementation of all-dielectric inter-coupled nanopillar fabrics.

In this work, different from the previous literature, we intro-
duce a multi-task deep neural network design to predict the
complete phase map information for a high-DOF inter-coupled
metasurface geometry (forward problem). In addition, we pro-
pose to use a single-task deep neural network with a similar
architecture for the inverse design problem, in which the aim is
to find the metasurface geometry from a given EM phase profile
[24]. To the best of our knowledge, there exist no conventional
tools or deep-learning-based models for the solution of this inverse
design problem, which makes our design the first to achieve such
metasurface geometry prediction. Working with three types of
metasurface design configurations, each of which has a different
DOF (Fig. 1), our experiments revealed that the proposed neural
networks showed high performance for both the forward and
inverse design problems.

2. METHOD

In this work, two main problems are studied: 1) the forward prob-
lem of EM near-field response prediction, in which the input is
a cross-section map of a metasurface, and the output is an EM
near-field intensity map, and 2) the inverse design problem of

metasurface geometry prediction, in which the input is an EM
phase profile and the output is a metasurface geometry. Both of
these prediction problems are addressed for three types of meta-
surface design configurations, as illustrated in Fig. 1, by designing
deep neural networks.

A. Metasurface Design Configurations

The selected three configurations use different positionings of the
fixed-size pillars of the same material. In our experiments, we fixed
the size and the material type since one can achieve almost any
desired phase profile by changing the positions of these pillars, and
thus their level of inter-coupling, to cover local phase accumulation
across the entire range from 0 to 2π .

In general, one may prefer metaunits that lead to devices
and metasurface designs as efficient and broadband as possible.
Although the metaunit designs that use the Panchartam–Berry
phase approach have produced promising results in recent years
[25], the resulting devices typically suffer from low device effi-
ciency and large lattice sizes in general. The lattice structures are
forced to be large as it is mandatory to reduce inter-coupling effects
between the metaunits. On the contrary, metalens structures that
utilize the inter-coupling effects between the metaunits do not
suffer from significant lattice constraints and show great efficiency
[23,26]. Despite the performance level of these designs near the
optimum device operating frequency, they tend to fail at providing
the same efficiency over a broad spectrum [27]. Considering these
undesired limitations, in our designs, we use a dielectric metaunit
that provides full phase accumulation coverage via controlling the
inter-coupling between them while offering broadband efficiency
over the entire 400–700 nm visible range. The TiO2 nanopillar
optimized in [28] is adopted as our fundamental design block.
These nanopillars have a fixed radius of 45 nm and a fixed height of
600 nm and are placed on top of a SiO2 substrate [Fig. 2(a)].

The metaline configuration is used as a basic proof of concept,
in which three pillars are aligned; i.e., the simulated structure is a
“metaline” that is periodic and infinite along one direction. The
position of one pillar is fixed at the center of the cross-sectional
area, and the other two meta pillars’ distances to the center change
in each input sample. The simulation data were collected at a

Fig. 1. For the forward problem, the input is a cross-section nanopillar map representing the metasurface geometry, and the output is a near-field elec-
tric field response. The arrow between the input and output indicates the use of our proposed neural network. For the inverse design problem, input–output
relations are the opposite and the arrows should be reversed. In other words, the input is the near-field electric field response, and the output is the refractive
index cross-section nanopillar map.
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Fig. 2. (a) 3D illustration of a single nanopillar used as the metaunit. For the metaline configuration, (b) refractive index cross-section of an example
positioning of the nanopillars and (c) their EM near-field intensity map obtained by the numerical simulation for the forward problem. For the triangu-
lar grid configuration, (d) refractive index cross-section of an example positioning of the nanopillars and (e) their EM near-field intensity map obtained by
the numerical simulation. (f ) Illustration of randomly positioned nanopillars. (g) Illustration of circularly positioned nanopillars, which will be used for the
achromatic metalens design.

wavelength of 550 nm. The resolution of a two-dimensional (2D)
cross-sectional input image is set to 128× 48 pixels. The pillars
are represented on this input image as circles with a fixed radius.
With the selected image resolution and the radius, this geometry
ensures that the interactions between the pillars are confined to one
axis only. This reduces the problem’s complexity and DOF. In this
work, we use this configuration to show that the inter-coupling
effects between metapillars can be predicted with a deep neural net-
work. An example positioning of the pillars and its EM near-field
intensity map obtained by simulation are illustrated in Figs. 2(b)
and 2(c), respectively.

In the triangular grid configuration, the pillars are randomly
placed on a triangular grid, which limits the number of places that a
pillar can be located (see Fig. S1 in Supplement 1). The lattice spac-
ing is set to 5 nm, which is small enough to induce the coupling of
the pillars from every direction. The coupling interactions between
the pillars are, therefore, not restricted to one axis but effective in
all directions. Likewise, the simulation data were collected at a
wavelength of 550 nm. In this configuration, the input image size
is fixed as 128× 128. As a result of this fixed size, the number of
randomly located metapillars changes from one sample to another
(in our experiments, this number varies from 10 to 27 due to the
packing limit). Note that this configuration has the limitation of
having a fixed total area, which will be relaxed in the next configu-
ration. An example pillar positioning and its simulated map are
given in Figs. 2(d) and 2(e), respectively.

The random pillar configuration is used for the case where
there are no constraints on the number and position of the pillars
or on the total simulation area. The random positioning of the
pillars is illustrated in Fig. 2(f ). This configuration simulates the
case where an arbitrarily large simulation area is chosen to calculate
its EM near-field response. In our experiments, metapillars are ran-
domly located across a simulation area of 2048× 2048 pixels. This
results in an average of 2950.7± 13.8 pillars in each simulation.
Here it is worth noting that, although we fixed this simulation area
in the experiments, our neural network design provides a generic
and computationally feasible solution that can be applied to an
arbitrarily selected area. Furthermore, to show the applicability of
this solution on different and multiple frequencies, for this con-
figuration, we collected the simulation data at seven spectral points
in the range of 400 and 700 nm; these points are equally spaced in
the frequency domain.

To solve this problem numerically with FDTD, the computa-
tional time may take prohibitively long for large simulation areas
[29], making the simulation infeasible. On the other hand, the
proposed neural network solution works much more efficiently,

even for large areas. To demonstrate large-area simulation in a real-
world application, the neural network trained for the random pillar
configuration is transferred and fine-tuned to design an achromatic
metalens [28], which is shown in Fig. 2(g). With the selected pillar
radius, this achromatic metalens design covers a simulation area of
1410× 1410 pixels, different from the simulation area previously
selected for the random pillar configuration. Nevertheless, the
proposed approach is applicable.

B. Deep Neural Network Designs

This work uses deep neural networks with the U-Net architecture,
which is a very well-known model in the field of computer vision
[30]. This architecture is an encoder–decoder network, where the
encoder accepts an image (a 2D map) as its input and the decoder
generates another image that has the same resolution as the input
image. In the forward problem, the input image is a binary map
specifying the metasurface geometry. To acquire the input, refrac-
tive index cross-section maps just above the substrate are converted
to binary maps to represent the metasurface. In these binary maps,
the space (pixel positions) occupied by the pillars is represented
with 1 (white), and the empty space (filled with air) is represented
with 0 (black). The output of the forward problem is the EM
near-field response, which is considered as a six-channel image
containing the real and imaginary parts of the three Cartesian
components of the vectorial electric field, i.e., Re(E x ), Im(E x ),
Re(E y ), Im(E y ), Re(E z), and Im(E z). For the inverse design
problem, the inputs and the outputs are the opposite of the forward
problem. In other words, the input is the EM near-field response
map, and the output is the binary map specifying the metasurface
geometry.

In order for the encoder–decoder network to generate (predict)
an output from a given input, the encoder path extracts features
directly on the input using a series of convolutional and pooling
(downsampling) layers. The decoder path then constructs the
output map from the extracted features by upsampling and con-
voluting them in consecutive layers. In the U-Net architecture, a
long-skip connection (concatenation operation) passes the feature
map from an encoder layer to its symmetric decoder layer in order
for the upsampling process to better recover the fine-grained spatial
information lost during downsampling. The schematic overview
of the encoder and decoder architecture used in our network
designs is sketched in Fig. 3.

In our designs, the encoder path includes five consecutive
blocks of two convolutions and one max pooling, whereas the
decoder path consists of five consecutive blocks of upsampling,
concatenation, and two convolutions. All convolutions use

https://doi.org/10.6084/m9.figshare.24143016


Research Article Vol. 10, No. 10 / October 2023 / Optica 1376

Fig. 3. Schematic overview of the encoder and decoder architectures used in our network designs. The numbers on the top of an encoder–decoder block
are the number of feature maps used by the block.

3× 3 filters and are followed by the rectified linear unit (ReLU)
activation function. The dropout layer, with a factor of 0.2, is
added after the first convolution to prevent overfitting. The pool-
ing/upsampling layers use 2× 2 filters. The number of feature
maps used by the first encoder block is 32. This number is doubled
after each pooling layer and halved after each upsampling layer.
The block number is selected as five since it yields a sufficient field
of view to extract coupling information between the pillars with the
selected filter sizes and the image resolution. Note that this is one of
the typical architectures used by the U-Net-based models [30].

In this work, we propose two neural network designs. The first
one is a single-task network for the inverse design problem. This
network has one encoder and one decoder since the one-channel
output map, representing the metasurface geometry, is estimated
from multi-channel input maps, representing the real and imagi-
nary components of the electric field in Cartesian coordinates.
This single-task network takes a six-channel image for the met-
aline and triangular grid configurations (Fig. 4), and 42-channel
image, which corresponds to the real and imaginary parts of all
EM near-field responses collected at seven different frequency
points, for the random pillar configuration. The second one is a
multi-task network designed for the forward problem to predict
the real and imaginary parts of the Cartesian components of the
electric field maps in the near-field from the metasurface geometry.

Fig. 4. Single-task network for the inverse design problem. This net-
work has one encoder and a single decoder that use the architecture given
in Fig. 3. This single decoder uses the feature maps, which are the outputs
of the encoder.

Fig. 5. Multi-task network for the forward problem. This network has
one encoder but multiple decoders that also use the architecture given in
Fig. 3. These decoders use the same feature maps learned by the shared
encoder.

This network includes one shared encoder path and six decoder
paths, one for predicting each real or imaginary part (Fig. 5). Here
we use a multi-task network since the multi-task learning paradigm
is known as an effective means to predict different but related tasks.
Learning multiple tasks from a single shared encoder decreases
the likelihood of overfitting since this requires learning a shared
representation that works adequately well for all the tasks [31].

The networks were designed and trained in Python using the
Tensorflow framework. The network weights were optimized by
backpropagation. The AdaDelta optimizer was used to adaptively
adjust the learning rate. We used the categorical cross-entropy
loss to train the single-task network since estimating a binary
map corresponds to a classification problem for each pixel. On
the other hand, we used the mean squared error loss to train the
multi-task network since estimating continuous EM near-field
responses corresponds to a regression problem for each pixel.
The datasets were generated using the Lumerical FDTD solver.
Refractive index monitors and frequency domain field monitors
were used in the simulations to obtain the input–output pairs.
Please see the description of the FDTD setup, Fig. S2 and Table S1
in Supplement 1, for more details of data generation and training.

https://doi.org/10.6084/m9.figshare.24143016
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3. RESULTS

A. Forward Problem for Metaline and Triangular Grid
Configurations

The multi-task network design illustrated in Fig. 5 was used
to predict the six-channel EM near-field response from meta-
surface geometry input maps. Subsequently, these six channels
were used to calculate the corresponding EM near-field intensity
map. Visual results obtained by the proposed network on three
exemplary test set samples are illustrated in Figs. 6(a)–6(c) and
Figs. 6(d)–6(f ) for the metaline and triangular grid configura-
tions, respectively. The percentage error maps calculated on the
simulated and predicted maps of these samples are illustrated in
Fig. S7 of Supplement 1. Additionally, for each sample, the mean
squared error (MSE) was calculated between the EM near-field
intensity (or irradiance) maps obtained by the FDTD solver and
predicted by the proposed multi-task network. As the unit of irra-
diance is W/m2, the MSE values are given in the unit of W2/m4.
For the metaline and triangular grid configurations, the MSEs
averaged over test set samples were 1.29e− 03± 0.12e− 03 and
5.76e− 07± 0.02e− 07, respectively. These low MSEs indicated
that the maps were predicted quite accurately, as also supported by
the visual results.

B. Forward Problem for Random Pillar Configuration

The random pillar configuration allows to use an arbitrarily
selected area and collect the simulated data at an arbitrary number
of spectral points. Thus, we make two modifications: first, the
previous configurations were simulated for a single spectral point
at a particular wavelength. Thus, we designed a multi-task network
with six decoders, each of which predicted a real or an imaginary
part of the Cartesian components of the vectorial electric field as
the EM near-field response. On the other hand, the random pillar
configuration allows to simulate data at N different spectral points,
which necessitates training 6×N decoders at the same time. In

Fig. 6. Visual results on exemplary test samples. For the metaline con-
figuration, (a) metasurface geometry maps, and EM near-field intensity
maps (b) obtained by the FDTD solver and (c) predicted by the multi-task
network. MSEs for the samples were 1.3e-03, 2.1e-03, and 2.4e-03,
respectively. For the triangular configuration, (a) metasurface geometry
maps, and EM near-field intensity maps (b) obtained by the FDTD solver
and (c) predicted by the multi-task network. MSEs for these samples were
5.8e-07, 2.5e-06, and 1.6e-06, respectively.

our design, this number would be 42 for the selected seven spectral
points. This would correspond to simultaneously optimizing the
weights of a larger network, which required more training data
and demanded more powerful processors and larger memory
resources. As a result, at some point, simultaneous training of all
these decoders would become infeasible. To alleviate this problem,
we used six independently trained multi-task networks, one for a
real or an imaginary part of one Cartesian component of the EM
near-field response. Each network has one encoder and multiple
decoders, as given in Fig. 5. But this time, each decoder predicts a
response obtained for one of the seven spectral points (see Fig. S4).
The encoder and decoder architectures of these networks are the
same as those given in Fig. 3.

The second modification was to handle arbitrarily selected
large simulation areas. To this end, we designed all networks to
take 256× 256 input tiles that were cropped out of a metasur-
face geometry map. Networks were trained on the tiles randomly
cropped out of the training samples. Then, to predict the EM
near-field intensity map of a test sample, we estimated the maps
for overlapping tiles and averaged all predictions estimated for
the same pixel. The overlapping tiles were obtained by sliding a
window over the map with an increment of 64 pixels (Fig. 7). In
our experiments, we only considered the predictions in the middle
128× 128 section of each window. We made these choices con-
sidering the inter-coupling effects between the pillars. We provide
the rationality behind these choices and the details of the averaging
algorithm in Sections S3.1 and S3.2 of Supplement 1, respectively.

In addition to analyzing the performance of our network on
predicting EM near-field responses, we examined its effects on EM
far-field response projections. To do so, we separately calculated
the far-field response of the simulated and the predicted near-field
response, using the Fresnel approximation, and compared these
far-field responses visually and quantitatively. One can calculate
the EM far-field response by taking the convolution of the EM
near-field response with the free space transfer function [32].
However, as the analytical convolution integral makes calcula-
tions almost impossible for many cases except for the most simple
diffraction geometries, one needs approximations. In our exper-
iments, we used the Fresnel approximation (see Fig. S6) as it is
one of the approximations that can be used in most cases but also
contains relatively fewer assumptions [33].

For the random pillar configuration, data were simulated at
seven spectral points, which were again equally spaced in the fre-
quency domain. For each spectral point, the MSE between the
maps obtained by the simulation and predicted by the proposed

Fig. 7. Illustration of estimating EM near-field and far-field responses
in the random pillar configuration by the sliding window approach.

https://doi.org/10.6084/m9.figshare.24143016
https://doi.org/10.6084/m9.figshare.24143016
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Table 1. For the Random Pillar Configuration, MSEs
for the Prediction of EM Near-Field and Far-Field
Intensity Maps at Different Frequencies

a

Frequency
(THz)

Wavelength
(nm)

Near-Field
(MSE)

Far-Field
(MSE)

428.3 700 5.0e-08 4.6e-06
481.8 622 8.0e-08 3.9e-06
535.3 560 1.8e-07 1.5e-07
588.9 509 2.0e-07 6.5e-07
642.4 467 4.3e-07 4.2e-10
695.9 430 4.7e-07 3.2e-07
749.5 400 5.6e-07 5.2e-08

aThese results were the average MSEs obtained on the test samples.

multi-task neural network was calculated. Table 1 reports the aver-
age MSE calculated on the test set samples for each spectral point
separately. As seen in this table, the errors were acceptably low,
which also led to accurate visual results. For an example spectral
point (with 535.3 THz frequency corresponding to 560 nm wave-
length), the visual results obtained on an exemplary test sample are
given in Fig. 8. The percentage error map calculated on the sim-
ulated and predicted EM near-field maps is illustrated in Fig. S7.
The visual results on the same test sample for the other spectral
points can be found in Fig. S8.

In addition to calculating the MSE metrics directly on the
simulated and predicted values, we used an additional assessment
method to evaluate the performance of EM near-field prediction.
This second method focuses on assessing the spatial information of
strong-field localizations in the near-field intensity maps because
such strongly localized field sites constitute hot spots in the inten-
sity distribution and the spatial locations of these local hot spots
are important from an electromagnetic point of view. This carries
useful information because a large collection of photonic functions
to be carried out by metasurfaces are closely related to the set of
these hot spots and their spatial distributions. To detect the inten-
sity peaks, which correspond to the local hot spots, we compared
the responses of the simulated and predicted EM near-field maps
against a threshold that was automatically selected for each map
separately, considering the mean and the standard deviation of the
responses on this map. The details of this selection can be found in
Supplement 1. Then, we identified peak regions in each map as the
pixels with responses greater than this threshold. The overlapping
peak regions in the simulated and predicted maps were considered
as true positives, and the precision, recall, and f-score metrics were
calculated for quantitative evaluation. The visual and quantita-
tive results of this experiment are shown in Fig. S9 and Table S2.
These results indicated that our networks were able to detect the
peak regions with high accuracy, leading to f-scores greater than
77.00% for the first six frequencies. For the seventh one, the f-score
was 73.78%. We repeated this experiment for the EM far-field
intensity prediction and its results are also reported in Supplement
1.

C. Inverse Design Problem for Metaline and Triangular
Grid Configurations

The single-task network design illustrated in Fig. 4 was used to
predict the metasurface geometry from the EM near-field intensity
maps. The experiments revealed that the predictions were quite
successful for both configurations. For the metaline and triangular
grid configuration, the visual results predicted by the proposed

Fig. 8. (a) Example of the refractive index cross-section of randomly
positioned nanopillars. (b) Its EM near-field intensity map obtained
by the simulation. (c) EM far-field intensity map calculated from the
simulated EM near-field intensity map using the Fresnel approximation.
(d) Refractive index cross-section estimated from the EM near-field
response by the single-task network. Two red circles indicate the posi-
tion of incorrectly predicted pillars. (e) EM near-field intensity map
predicted by the multi-task network. (f ) EM far-field intensity map cal-
culated from the predicted EM near-field intensity map using the Fresnel
approximation.

network on exemplary test samples are depicted in Fig. 9 together
with the original simulation design that was used to create the EM
near-field monitor data, which were the network inputs for this
prediction. As also seen in these figures, a near-perfect prediction
performance was achieved. Additionally, we designed a specific
test for the metaline configuration to understand the robustness of
its network on the positioning of the three pillars. This test aimed
to investigate the performance of the geometry prediction when
the three pillars were arbitrarily located. Figure 9(c) shows such
a test sample, which is much more complex than the training set
samples that allow only 1D pillar positioning. As seen in Fig. 9(d),
the network successfully generalized learned interactions among
pillars even when arbitrarily located.

D. Inverse Design Problem for Random Pillar
Configuration

The single-task network was tested on five test set samples. The
input fed to this network is the FDTD simulated EM near-field
map. The original simulation design and the prediction are given
in Fig. 8 for the first sample, and in Fig. S10 for the others. For

https://doi.org/10.6084/m9.figshare.24143016
https://doi.org/10.6084/m9.figshare.24143016
https://doi.org/10.6084/m9.figshare.24143016
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Fig. 9. For the metaline configuration, (a) original simulation design of
a test sample and (b) its inverse design prediction. For another sample that
was used to understand the robustness of the network, (c) original simula-
tion design and (d) inverse design prediction. For the triangular grid con-
figuration, (e) original simulation design of a test sample and (f ) its inverse
design prediction.

Table 2. For the Inverse Design Prediction in the
Random Pillar Configuration, the Precision, Recall, and
F-score Percentages Obtained on the Test Set Samples

Precision Recall F-score

Sample 1 (Fig. 8) 98.90 99.08 98.99
Sample 2 (Fig. S10) 99.01 99.14 99.07
Sample 3 (Fig. S10) 98.87 99.01 98.94
Sample 4 (Fig. S10) 99.11 99.04 99.08
Sample 5 (Fig. S10) 99.29 99.42 99.35

quantitative assessment, first, the number of true positive (TP)
pillars was calculated comparing the pillars P that were pre-
dicted by the network with the pillars S in the original simulation
design. A predicted pillar pi ∈ P is true positive if its centroid was
found inside s j ∈ S and if there exist no other predicted pillars
whose centroids were found inside the same pillar s j . Then, the
precision=TP/|P |, recall=TP/|S|, and f -score metrics were
calculated. The f -score metric is the harmonic mean of precision
and recall. Table 2 reports these metrics for each test set sample
separately. This table reveals that the inverse design prediction gave
near-perfect performance scores.

E. Verification on Achromatic Lens Design

To assess the applicability of the proposed network designs on a
real-world application, we conducted experiments on a specific
achromatic metalens design given in [28], which consists of a peri-
odically structured metasurface configuration (Fig. 10). To better
predict the EM near-field intensity map from this specific geom-
etry, we transferred the weights of the network pretrained for the
random pillar configuration and fine-tuned these weights on new
samples containing periodic and dense nanopillar structures. Next,
the newly trained network was used to predict the EM near-field
intensity map for the achromatic metalens design. This transfer
learning is illustrated in Fig. 11. Here the new training samples
were not cropped from any part of the achromatic metalens design
but from synthetically generated structures containing pillars on
a regular grid (one example is shown in Fig. 11). As a result, there
existed no bias in the training samples towards overfitting this
achromatic metalens design.

For the achromatic metalens design in Fig. 10(a), the full EM
near-field intensity maps obtained by the simulation and predicted
by the proposed network are illustrated in Figs. 10(b) and 10(e),
respectively. The MSE between these maps was 4.23e-07. The
percentage error map calculated on the simulated and predicted

Fig. 10. (a) Refractive index cross-section of a circular achromatic met-
alens. (b) Its EM near-field intensity map obtained by simulation. (c) EM
far-field intensity map calculated from the simulated EM near-field inten-
sity map. (d) Refractive index cross-section estimated from the EM near-
field response by the single-task network. Here predictions are indicated as
red circles, and the boundaries of pillars in the original design, shown in
(a), are indicated as white for comparison. (e) EM near-field intensity map
predicted by the multi-task network. (f ) EM far-field intensity map calcu-
lated from the predicted EM near-field intensity map.

EM near-field maps is also illustrated in Fig. S7. Since the main
assumptions of the Fresnel approximation were not satisfied
for this particular application, another approach was necessary
to calculate the far-field projections. To this end, we used the
“farfieldexact3d” script method, available in the Lumerical FDTD
solver. The predictions were fed to the FDTD environment again
and labeled as near-field DFT monitor information. Then, the
“farfieldexact3d” script method was called to calculate the EM
far-field response at the desired points in the 3D space. The same
script method was utilized for the simulation data as well. The EM
far-field intensity maps found by the same procedure are com-
pared, as displayed in Figs. 10(c) and 10(f ), for the simulation and
prediction, respectively. The MSE between these far-field maps
was 1.14e-07.

One metasurface geometry map predicted by the network for
this achromatic metalens design is shown in Fig. 10(d). However,
since inverse designs are not unique for the metasurface design
process (i.e., since one can achieve the same EM response with
different designs theoretically), we trained and tested multiple
models. In Figs. 12(a)–12(c), three different inverse designs
(corresponding to three separate models) predicted for the same
achromatic lens are illustrated. In all these three visuals, the first
eight concentric circles were predicted at the same location as the
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Fig. 11. Illustration of transfer learning for achromatic metalens design prediction.

pillars in the original design. However, the ninth layer was not
predicted in any of these three runs; the inside of this missing layer
turned out to be different for different runs.

The EM far-field response at the focal plane of a circular lens is
more important compared to the EM near-field response. Thus,
all these three inverse models were simulated with the Lumerical
FDTD solver to determine their EM near-field and far-field
responses and the calculated EM far-field responses are presented
in Figs. 12(e)–12(g). The EM far-field intensity map of the original
design is also given in Fig. 12(d) for comparison. As seen in these
visuals, intensity distributions of the EM far-field responses were
almost identical, while focusing efficiency in the predictions was
slightly lower than the original design. This might be attributed
to the following: in a neural network design, it is very common
to normalize the input data to enhance network learning. This
normalization, however, did not take into consideration the
impact of free space propagation in a circular design on the EM
near-field intensity predictions. Despite this limitation, the EM
far-field responses across all three inverse designs displayed similar
characteristics, regardless of their focusing efficiency differences.

4. DISCUSSION AND CONCLUSION

Our experiments revealed that encoder–decoder networks, with
the U-Net architecture, proved to predict EM near-field responses
and design metasurface configurations. They are shown to possess
several advantages: first, the proposed network designs reduced the
required computational time compared to the iterative numerical
methods, which had to perform a complicated, computationally
demanding, and time-consuming simulation for each EM near-
field response. On the other hand, predicting these responses by
a trained neural network was faster. Note that, even though the
network training could take more time, this training should be
undertaken only once, and it could be used for many predictions
without further training.

Second, compared to the previous networks implemented for
metasurface design, our proposal of using an encoder–decoder
network enabled to predict the EM near-field intensity map rather
than just analyzing the transmission spectra, which only focus on
one parameter. Thus, our proposal provided a full EM simulation
result that could be analyzed and processed further. Third, this
work facilitated the prediction of a metasurface pillar geometry for
the inverse design problem. The traditional simulation tools did

Fig. 12. (a)–(c) Inverse designs predicted by three separately trained networks for the same achromatic lens. EM far-field responses (d) calculated for the
original design and (e)–(g) obtained by simulating the predictions shown in (a)–(c) with the FDTD solver.
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not provide a direct inverse design prediction and relied heavily
on the trial-and-error approach. Consequently, our innovative
design strategy of directly mapping a corresponding EM near-field
response to the metasurface design holds immense potential to
revolutionize the design approach. This inverse solution did not
set any constraints on the total number and location of metaunits
or on the total simulation area, which were used by the previous
studies.

In summary, this work introduced a novel deep learning
approach to predict the full EM near-field response of metasur-
faces. It provided a complete solution for the vectorial electric field
in the near-field, making it the first account of a deep learning
approach to achieve this task. Moreover, this approach offered a
solution for the inverse design problem, which finds the meta-
surface geometry from the EM near-field responses, for the first
time. The type of device, the operating frequency range, and the
type of design geometry do not primarily affect the performance
of our approach. Therefore, it is possible to apply the proposed
approach in analyzing and designing different electromagnetic
structures and photonic devices. For example, as future work, one
can explore differently shaped metaunits (rectangular, triangular,
etc.) as the building blocks used to construct metasurfaces and
different lattices to stack them in such metasurfaces. In these cases,
the network should be trained with new inputs consisting of these
new metaunits and their inter-coupled fabrics.
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