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Abstract
III-nitride semiconductor lasers have made remarkable progress in recent years, particularly
thanks to their ability to be tuned from the ultraviolet to the infrared. This comprehensive review
explores the latest developments in GaN-based semiconductor lasers, with a specific focus on
edge-emitting laser, vertical-cavity surface-emitting laser, photonic crystal or nanocrystal
surface-emitting laser, and whispering gallery mode laser diodes. The review delves into each
laser type’s distinctive properties and potential applications, evaluating their performance while
identifying current challenges. Finally, this review aims to shed light on challenges and
prospects in GaN-based laser development.

Keywords: semiconductors, lasers, GaN

1. Introduction

III-nitride semiconductor laser diodes have been gaining
increased interest in optical communication systems, data stor-
age, solid-state lighting, and laser displays [1–3]. The band gap
energy range in III-nitride based alloy can be precisely adjus-
ted between 0.7 and 6.2 eV at room temperature by tuning its
composition [4, 5]. As a result, GaN-based lasers theoretically
can emit spectra covering a range from the ultraviolet (UV) to
the infrared.

Furthermore, both GaN and its alloys with aluminum and
indium exhibit a hexagonal wurtzite structure, and maintain a
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direct bandgap throughout the entire composition range span-
ning from AlN to InN. This characteristic renders them well-
suited for laser diodes. Several factors significantly influence
the performance of GaN-based lasers, such as the strong polar-
ization field, substrate choice, quality of the thin films, and the
quality of the crystal structure. To this end, this study conducts
a synthesized review of GaN-based lasers.

The strong polarization field, inherent in GaN and its alloys,
can affect the carrier distribution and recombination rates,
which in turn impacts the laser’s efficiency and threshold cur-
rent. Figure 1 shows the hexagonal wurtzite GaN structure and
major crystallographic planes. The crystal structure of GaN
is hexagonal and lacks inversion symmetry along the [0001]
crystallographic axis. Due to the difference in electronegat-
ivity between Ga and N, polar covalent bonds are formed in
the compound. Nitrogen, being more electronegative, attracts
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Figure 1. (a) Major crystallographic planes, (b) atomic structure with bonds configuration, and (c) top view of c-plane of hexagonal
wurtzite GaN structure.

electrons more strongly, resulting in an uneven electron dens-
ity distribution within the Ga-N bonds. This causes nitrogen
to acquire a partial negative charge and gallium a partial pos-
itive charge. The resulting dipole moment within each Ga-N
bond aligns across the entire crystal lattice, creating an over-
all dipole moment for the crystal. This alignment of dipole
moments contributes to creating an electric field along the
[0001] direction within the crystal due to its crystalline struc-
ture. Therefore, when growing GaN/InGaN quantum wells
along the [0001] polar direction (c-plane) of the crystal, an
electric field emerges across the InGaN layer. This electric
field possesses the potential to compromise device perform-
ance due to the quantum-confined Stark effect (QCSE) [6, 7].

The choice of substrate is crucial for the growth and per-
formance of GaN-based lasers, as different substrates offer
varying advantages and challenges, impacting the quality,
efficiency, and commercial viability of the resulting devices.
Figure 2 shows the number of publications per year on GaN
lasers grown on GaN, sapphire, and silicon (Si) substrates.
GaN substrates provide the best lattice match and thermal
properties for GaN laser growth. The major breakthroughs
in high-power and long-lifetime blue GaN lasers on GaN
substrates have been achieved after two decades of intens-
ive research. Owing to the high cost and limited in wafer
size associated with GaN substrates for homoepitaxial growth,
GaN-based devices predominantly resort to heteroepitaxy on
alternative substrate materials, such as sapphire and Si, and
encounter a significant lattice mismatch issue [8–10]. A nat-
ural decline in the number of new publications of GaN lasers
on GaN substrate since 2019 shown in figure 2 suggests a

shift in research focus towards the cost-effective substrates.
Sapphire substrates are cost-effective and thermally stable but
suffer from significant lattice and thermal mismatches with
GaN. In comparison, Si offers cost advantages and potential
for integration with existing electronics but faces significant
lattice and thermal mismatch challenges. The substantial lat-
tice mismatch gives rise to a high-density threading disloca-
tions (TDs), impeding achieving the necessary high crystal
quality for GaN materials [11–13]. There has been a signific-
ant increase in the number of publications on GaN lasers on
Si substrates, surpassing those on sapphire and approaching
those on GaN substrates.

High-quality thin films with minimal defects and uniform
composition are essential for efficient light emission and long
device lifetimes. In the 1990s, two pivotal breakthroughs in
GaN semiconductor growth were the introduction of AlN [14]
and GaN [9] nucleation layers, which enhanced the quality of
GaN films and the achievement of p-type GaN [15–17]. These
breakthroughs were crucial for making high-quality GaN films
and paved the way for the fabrication of light-emitting devices.
In 1996, Nakamura et al reported the groundbreaking achieve-
ment of introducing the inaugural pulsed current-injected
GaN laser on sapphire substrates [18]. This marked a pivotal
advancement in the evolution of GaN-based lasers, represent-
ing a notable milestone in semiconductor technology.

The successful commercialization of high power GaN-
based edge-emitting lasers (EELs) emitting from blue to green
has been realized through epitaxial growth on expensive c-
plane GaN substrates [19]. Commercialized 455 nm blue and
525 nm green EELs have achieved optical output powers of
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Figure 2. Number of papers published per year on GaN based lasers on GaN, sapphire and Si substates in the past decades (data taken from
ISI Web of Science).

5.99 W and 1.97 W, respectively, with an estimated lifetime
exceeding 30 000 h [20]. These GaN EELs have already been
utilized in various applications, including displays and pro-
jectors. Recent achievements at laboratory scale have demon-
strated the realization of GaN lasers on cost-effective and
large-size Si substrates [10]. The substantial lattice mismatch
of approximately 17% between GaN and Si has presented
challenges leading to a high density of TDs [21]. These dis-
locations often act as non-radiative recombination centers,
hindering the performance of GaN-based lasers on Si sub-
strates. GaN-based EELs exhibit poor beam quality, resulting
in a broader emission spectrum and increased beam divergence
[22]. The endeavors for improving GaN laser performance and
expanding their applications are well discussed in this paper.

Meanwhile, there is significant interest in GaN-based ver-
tical cavity surface emitting lasers (VCSELs) owing to their
precise beam control and noteworthy thermal stability [23].
The combination of short cavity length and low threshold
current in GaN-based VCSELs leads to high-speed modula-
tion, efficient power usage, and compact device designs. These
characteristics make GaN-based VCSELs particularly advant-
ageous for high-resolution imaging and optical communica-
tion applications, where performance and efficiency are crit-
ical. The commercialization of GaN-based VCSELs emitting
at 445.9 nm (12 mW) and 514.9 nm (1.5 mW) on c-plane GaN
substrates marks a significant technological advancement in
the field [24]. It is essential to highlight that VCSELs may
undergo a multi-transverse-mode operation when the lasing
diameter is larger during high-power operations. Recently,
green GaN-based VCSELs have been reported to exhibit a
low threshold current density of 51.97 A cm−2 at an emission
wavelength of 524 nm [25]. Recent research and development
endeavors addressing challenges associated with high reflect-
ance and low resistance distributed Bragg reflectors (DBRs)
are discussed in this paper.

GaN-based photonic crystal surface-emitting lasers
(PCSELs) [26], or nanocrystal surface-emitting lasers
(NCSELs) [27] are gaining prominence owing to their cap-
ability to achieve single longitudinal and transverse mode
oscillation in two dimensions. This unique feature enables
them to achieve single-mode operation at high power levels by
leveraging the band edge of the photonic band structure [28].
In addition to nitride-based optical microcavities of Fabry–
Perot resonators and photonic crystal structures, there has
been significant interest in whispering gallery mode (WGM)
microdisk lasers [29]. GaN quantum dot (QD) -based WGM
lasers have attracted more attention thanks to their enhanced
optical properties. These microcavities have garnered atten-
tion for their diverse applications facilitated by high optical
gain and a small mode volume [30].

A comprehensive review of the relevant literature will be
especially helpful in synthesizing the key research insights
and unveiling major research trends in developing GaN-based
lasers. Although some studies have reviewed GaN-based UV
lasers, semipolar InGaN lasers, and the application of GaN
lasers in visible-light communications [31–33], a comprehens-
ive examination focusing on material development and struc-
tural design for GaN-based lasers remains limited. Hence,
this review article delves into the latest advancements across
four distinctive categories of GaN laser structure. Spanning
from conventional EELs to pioneering VCSELs, state-of-the-
art PCSELs or NCSELs, and captivating WGM microcavity
lasers, this discussion emphasizes material growth and struc-
tural design, providing an in-depth analysis of the technolo-
gical progress and challenges within these domains. Through
a detailed examination of recent breakthroughs in GaN-based
lasers, we aim to provide valuable insights into the forefront
of technological developments, paving the way for a deeper
understanding of their potential applications and the future
landscape of these semiconductor lasers.
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Figure 3. (a) Cross-sectional TEM bright-field image of the SAG laser diode cavity. (b) Photoluminescence spectra obtained on the two
different side facets of the narrow strip. (c) Micro-photoluminescence spectra obtained on the two side facets of the thin stripe. (d) Edge
emission spectra of a narrow stripe. Reprinted from [54], Copyright (2019), with permission from Elsevier.

2. EELs

GaN-based EELs feature a distinctive cavity structure, emit-
ting light from the semiconductor’s edge rather than the sur-
face. The research began with the discovery of GaN stimu-
lated emission, leading to room-temperature optically pumped
lasing [34–37]. Nakamura et al then developed pulsed current-
injected blue GaN EELs on sapphire using InGaN multiple
quantum well (MQWs), achieving 215 mW at 2.3 A and
417 nm output [38, 39]. This progressed to room-temperature
continuous wave (CW) operation with a lifetime exceed-
ing 10 000 h at 20 ◦C [40]. Efforts with epitaxially later-
ally overgrowth (ELO) GaN or free-standing GaN substrates
proved effective in enhancing GaN EELs’ performance in
CWoperation [41–43]. This approach addressed crystal defect
issues, impacting the efficiency and reliability of semicon-
ductor lasers, allowing for the successful commercialization
of GaN-based laser diodes through epitaxial growth on GaN
substrates [19].

Significant efforts addressed challenges related to high
indium content QWs, achieving progress in extending the
emission wavelength of current-driven InGaNEELs to 531 nm
[44–50]. Semipolar orientations demonstrated more minor
piezoelectric polarization effects, leading to lower threshold
current densities and improved laser efficiency. Especially for
green GaN EELs grown on semipolar planes, such as (11–
22), (20–2–1), and (20–21) planes, reports indicated substan-
tial benefits, contributing to enhanced performance in terms of

lower threshold current densities and improved overall laser
efficiency [51–53].

Considering cost-effectiveness, GaN-based EELs prefer-
entially utilize c-plane GaN substrates over ELO and semi-
polar plane technologies. Notably, Nichia has successfully
developed Watt-level GaN-based EELs that emit in the
blue and green on c-plane GaN substrates, demonstrating
mature processes and technologies for high-performance laser
applications [20]. While the prevailing method for manufac-
turing GaN-based laser diodes relies on expensive GaN sub-
strates, encountering challenges like non-uniformity in offcut
angle and residual stress, researchers actively pursue more
cost-effective solutions.

A promising approach involves growing GaN-based LDs
on large-size, low-cost Si substrates. However, the growth of
GaN on Si using metal-organic chemical vapor deposition
(MOCVD) faces the issues of significant mismatch in both
lattice constant (∼17%) and thermal expansion coefficient
(∼56%) between GaN and Si [10, 21]. Efforts to enhance the
quality of GaN on Si substrates have led to the achievement
of stimulated emission only under optical pumping conditions
at room temperature [54–56]. Figure 3(a) shows the transmis-
sion electron microscopy (TEM) micrograph of selective area
growth (SAG) of semipolar InGaN/GaN MQWs laser diodes
on the patterned GaN/AlN/Si (111) templates [54]. The spec-
tra in figure 3(b) show that 530 and 416 nm peaks come from
MQWs on the (0001) plane and along the left-side semipolar
facet, respectively. Figures 3(c) and (d) illustrate the optically
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Figure 4. (a) Schematic architectures and (b) cross-sectional scanning TEM image of AlGaN-based NUV-LD structure grown on Si [57].
Reprinted with permission from [57]. Copyright (2018) American Chemical Society. (c) Schematic architectures and (d) cross-sectional
scanning TEM image of InGaN/GaN QW blue laser diode structure grown on Si [58]. Reproduced from [58]. CC BY 4.0.

pumped lasing originating from the edge facet of the cavity,
specifically emanating from the MQWs layers on the semi-
polar facets.

In 2016, Sun’s team reported a groundbreaking achieve-
ment in developing room-temperature CW electrically injec-
ted blue–violet (413 nm) InGaN-based EELs on Si [10].
They employed an Al-composition step-graded AlN/AlGaN
multilayer buffer to achieve a high-quality GaN film with
a notably low TD density of 6 × 108 cm–2. However, it
is important to note that, despite this achievement, certain
challenges persisted. The lasing threshold current density
remained high at 4.7 kA cm−2, and the operational voltage
exceeded 8 V at room temperature, indicating limitations in
the initial demonstration.

Subsequently, the same team demonstrated room-
temperature CW electrically driven AlGaN-based near UV
(NUV) (389 nm) [57] and blue (450 nm) [58] EELs grown
on Si. Figures 4(a) and (c) show the typical architectures of
EELs of AlGaN-based NUV-LD and InGaN/GaN QW blue
laser diode structure grown on Si. By employing a precisely
optimized Al composition step-downgraded AlN/AlGaNmul-
tilayer buffer, the well-defined interfaces of the InGaN/AlGaN
QW active region are distinctly visible in figure 4(b). The TD
density in the Al0.03Ga0.97N template was estimated to be as
low as 6 × 108 cm−2. To enhance the thin film quality of
the InGaN/GaN quantum well blue laser diode on Si, Al-
composition step-down-graded AlN/AlxGa1−xN buffer layers
were incorporated. The distinct interfaces for the individual
layers are illustrated in figure 4(d).

The authors demonstrated room-temperature CW electric-
ally injected InGaNEELs on a Si (100) substrate [59]. Figure 5

shows clear turning points at 320 and 350 mA, indicating
the onset of lasing for the n-side ridge waveguide laser diode
(nRW-LD) on Si (100). This report emphasizes compatibil-
ity with Si-based microelectronics and photonics platforms,
underscoring the potential integration of GaN-based lasers
with established Si technologies.

The advancement of highly efficient GaN EELs was pro-
pelled by their integration into augmented reality (AR) pro-
jection systems and virtual reality (VR) smart glasses and
headsets [60]. To meet the demands for low energy consump-
tion and a compact design, the preference is for GaN lasers
with shorter cavities to decrease the threshold and enhance
slope efficiency [61, 62]. Achieving uniformity and smooth-
ness is the most challenging factor for GaN EELs with short
cavities. The short cavity length amplifies the sensitivity of
the laser to imperfections in the facets. An EEL with a cav-
ity down to 75 µm was realized through a design incorpor-
ating one uncoated cleaved facet and one etched facet coated
with a high-reflectivity dielectric DBR [63]. Figure 6 shows
the schematic of the fabrication process. The laser successfully
achieved lasing in the CWmode, demonstrating a threshold of
3.9 kA cm−2. This indicates an efficient conversion of elec-
trical power to optical output in the continuous operation of
the laser device.

Recent advancements in GaN-based EELs from industry
have focused on improving efficiency, power output, and
miniaturization for various applications. High-power blue and
green EELs on c-plane free-standing GaN substrates have
been commercialized. Nichia reported a 455 nm blue EEL
achieving 5.90 W under CW operation with 51.6% wall-
plug efficiency (WPE) and a 525 nm green LD delivering
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Figure 5. (a) Schematic architectures of nRW-LD on Si (100) substrate. (b) Light output power as a function of the pulsed and CW injection
current at room temperature for nRW-LD on Si [59]. Reprinted with permission from [59]. Copyright (2020) American Chemical Society.

Figure 6. Schematics of the process flow (a)–(g) and confocal microscopy image (h) of a fully processed 100 µm long EEL. Reproduced
from [63]. © IOP Publishing Ltd CC BY 3.0.

1.86 W at 1.9 A with a record 23.8% WPE [24]. Meanwhile,
a GaN EEL grown on a Si substrate with a 100 µm
cavity and cleaved facets has been reported by Kyocera
Corporation [64]. The fabrication process of this EEL involved
the application of the ELO technique. In this method, epi-
taxial layers were cleaved on the Si substrate by leveraging
the inherent stress resulting from the variance in thermal

expansion coefficients. Subsequently, the cleaved dies were
collectively transferred to a submount wafer using a junc-
tion down mount approach. Figure 7 shows a scanning
electron microscopy (SEM) image of transferred dies on
the submount wafer and light-current–voltage characterist-
ics. The threshold current density for this laser device was
83 kA cm−2.

6
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Figure 7. (a) SEM image of transferred dies on the sub-mount wafer and (b) light-current–voltage characteristics. Reproduced from [64].
CC BY 4.0.

In summary, GaN-based EELs have advanced signific-
antly, featuring unique edge-emission from the semicon-
ductor. GaN EELs have been successfully commercial-
ized on GaN substrates, demonstrating high performance.
Recent breakthroughs in growing GaN EELs on Si substrates
have addressed lattice mismatch challenges, enabling room-
temperature CW operation and integration with Si technolo-
gies. These innovations promise high-performance applica-
tions in AR and VR systems.

3. VCSELs

VCSEL is a semiconductor laser diode structure with laser
beam emission perpendicular to the top surface [66]. In
1979, K. Iga published the pioneering work on GaInAsP/InP
surface-emitting injection lasers, marking the inception of
VCSEL technology [67–71]. GaAs-based VCSELs have
since found extensive applications in data communica-
tion, material processing, and light detection and ranging,
thanks to their compact size, low power consumption,
high efficiency, and broad modulation bandwidth [72–74].
Despite the success of GaAs-based VCSELs, realizing GaN-
based VCSELs posed more significant challenges due to
difficulties in achieving high crystalline quality in GaN-based
materials.

One of the primary obstacles in the development of GaN-
based VCSELs is the formation of distributed DBRs. GaN
has significant lattice mismatch with AlN and InN [75, 76],
leading to high dislocation densities and increased electrical
resistivity [77, 78]. Moreover, c-plane GaN devices encounter
issues due to strong polarization field and theQCSE [79], com-
plicating the achievement of efficient VCSELs. These factors
collectively contribute to the complexity of achieving effi-
cient VCSELs, emphasizing the need for innovative solutions
to overcome these hurdles in advancing GaN-based VCSEL
technology.

Initial attempts to develop GaN-based VCSELs focused
on optically pumped devices. In 1995, Honda proposed the

concept of a GaN-based VCSEL with highly reflective mir-
rors, utilizing AlN/AlGaN multilayer mirrors [80]. An optic-
ally pumped VCSEL of GaN as an active region sand-
wiched between 30-period Al0.40Ga0.60N/Al0.12Ga0.88N Bragg
reflectors was first published in 1996 [81]. The breakthrough
in electrically pumped GaN-based VCSELs came in 2008
with the first CW laser operation reported using a hybrid
microcavity with AlN/GaN and dielectric Ta2O5∕SiO2 DBRs
[82]. CW laser action was achieved at a threshold injection
current of 1.4 mA at an emission wavelength of 462.8 nm
in the blue at 77 K. However, achieving room temperat-
ure lasing proved difficult due to the poor thermal conduct-
ivity of the sapphire substrate. VCSELs necessitate elev-
ated current density, posing a challenge due to the associ-
ated increase in heat. The first room-temperature electrically
pumped GaN-based VCSEL was reported in the same year
[83]. Using laser lift-off, the sapphire substrate was detached.
Subsequently, this VCSELwas mounted on a highly thermally
conductive Si substrate through wafer bonding. The threshold
current was 13.9 kA cm−2 at an emission wavelength
of 414 nm.

Subsequent research focused on improving the perform-
ance of room-temperature lasing VCSELs, including via
optimized GaN substrate [84], semi-polar GaN substrate [85,
86], ELO, curved mirrors [87, 88], and buried lateral index
guides [89]. However, achieving a high-power output CW las-
ing at room temperature still presented a pending challenge.
Further improvement of this weak output was hindered by
the low reflectance and weak heat dissipation of the semicon-
ductor DBR [90–92].

Various GaN-based DBRs, such as AlN/GaN [93–95],
AlGaN/AlN [96–98], AlGaN/GaN [99, 100], and AlInN/GaN
[97, 98], faced challenges in achieving both high reflect-
ance and low resistance. Consequently, researchers have
been exploring alternative approaches, such as employing
all-dielectric DBRs like TiO2/SiO2 [101–105], Ta2O5/SiO2

[106–108], and HfO2/SiO2 [109–111], to enhance reflect-
ance. However, a hybrid cavity formed by combining a nitride
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Figure 8. (a) Schematic diagram of the fabricated blue VCSEL array. (b) Emission image of the fabricated blue VCSEL array operated
below the threshold [65]. Reproduced from [65]. © 2019 The Japan Society of Applied Physics. CC BY 4.0.

Figure 9. (a) Schematics of green VCSELs. (b) Current–voltage and current–output curves. Reproduced from [121]. © 2020 The Japan
Society of Applied Physics. CC BY 4.0.

bottom DBR with a dielectric top DBR and utilizing all-
dielectric DBRs all share the common problem of lower
thermal resistance [112].

Okur et al introduced a design where an optical cavity was
created on bottom high-reflectance dielectric DBRs embedded
in GaN through ELO on a sapphire substrate [113]. Utilizing
the ELO method, GaN-based VCSELs successfully achieved
CW lasing at 446 nm at room temperature. The corresponding
threshold current and maximum output power were measured
at 8 mA and 0.9 mW, respectively [114].

In 2016, advancements led to CW operation lasing with
an output power of 1.1 mW at 453.9 nm, leveraging the
ELO technique to grow DBRs embedded in n-type GaN
[115]. The novelty of this structure lies in that it utilizes
the ELO technique to grow DBRs embedded in n-type GaN.
Therefore, the device benefits from efficient heat extraction
and DBRs with high reflectivity and a wide stopband. To fur-
ther enhance output beyond milliwatt-class, a SiO2-buried lat-
eral index guide and long-cavity structure were implemented
[89, 116, 117], resulting in a blue VCSEL array with a not-
able output power of 1.19 W [65]. The monolithic two-
dimensional (2D) GaN-based VCSEL array, comprising 256
single elements arranged in a squared 16 × 16 matrix with
a 100 µm pitch, was successfully fabricated, as shown in
figure 8.

Despite these successes, GaN-based VCSELs primarily
demonstrated emission in the blue region. The development
of longer wavelengths, especially for green light, has faced
challenges, often referred to as the ‘green gap’ [118]. GaN-
based materials pose difficulties in forming green light emis-
sion devices due to the higher indium content, which can lead
to an increased density of defects and dislocations.

Nichia achieved room-temperature pulsed lasing for a
green GaN-based VCSEL, producing an output power of
0.80 mW at a laser emission wavelength of 503 nm [119].
A decade later, following the first report of electrically injec-
ted pulsed lasing VCSELs, Nichia achieved room-temperature
CW operation of milliwatt-class single-mode blue and green
VCSELs by replacing the double dielectric DBRwith a hybrid
DBR structure [120]. Sony employed a semipolar GaN sub-
strate to cultivate InGaN/GaN MQWs, successfully realizing
lasing for a green VCSEL at 515 nm. However, the threshold
current density remains relatively large at 14.4 kA cm−2 [121],
as shown in figure 9.

Recently, GaN-based VCSELs have demonstrated
wavelengths covering most of the ‘green gap,’ as shown
in figure 10 [122]. The threshold of these low-threshold
green VCSELs is in the sub-milliampere range, attributed
to the utilization of a QD based active region. An AlN layer
served as the current confinement layer, and an electroplated
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Figure 10. (a) AFM image of uncapped InGaN QD layer. (b) Schematic structure of the GaN-based VCSEL with a vertical
current-injection configuration and QD active region. (c) Photograph of the VCSEL array. (d) Room-temperature CW lasing spectra at
different current levels (left) and the corresponding voltage–current–light output characteristics (right) of three samples with varying lengths
of the cavity [122]. Reproduced from [122], with permission from Springer Nature.

copper plate replaced traditional metal bonding to enhance
heat dissipation. The outcomes offer crucial insights for
achieving high-performance GaN-based VCSELs. Notably,
room-temperature CW lasing was successfully achieved with
the lowest threshold current density recorded at 51.97 A cm−2,
emitting at 524 nm [25].

Overall, the development of GaN-based VCSELs has pro-
gressed significantly, addressing various challenges through
innovative solutions. The successful commercialization of
GaN-based VCSELs, which emit blue and green light with
milliWatt power levels on c-plane GaN substrates, repres-
ents a major technological breakthrough in the field [24].
Despite ongoing hurdles, particularly in achieving efficient
green emission, continuous improvements in material qual-
ity, thermal management, and DBR design are paving the way
for high-performance GaN-based VCSELs across a broader
wavelength spectrum.

4. PCSELs or NCSELs

Photonic crystals, initially introduced in 1987 byYablonovitch
and John [123, 124], consist of periodic structures with altern-
ating refractive indices. A defining characteristic of photonic
crystals lies in their capacity to control the emission and
transmission of light by delineating permissible and restric-
ted photonic energy bands and establishing the dispersion rela-
tion between photon energy and wave vector [125–127]. GaN-
based lasers incorporating photonic crystals can be categor-
ized into two types. The first type involves confining light
within a single defect of a nanofabricated 2D photonic crystal,

commonly known as a photonic crystal defect mode cavity
laser [128, 129]. The second type is PCSEL or NCSEL.

Photonic crystal defect mode cavity lasers confine light
within a single defect of a nanofabricated 2D photonic crys-
tal. These lasers benefit from high Q-factors and small modal
volumes, which enhance stimulated emission of cavity polari-
tons, resulting in a potent Purcell effect and low lasing
thresholds [130–133]. However, the development of GaN-
based photonic crystal defect mode cavity lasers faces signific-
ant challenges, including limited well-controlled etching tech-
niques and the difficulties associated with low-damage etch-
ing. These issues hinder precision lithography, particularly
because GaN devices emit at shorter wavelengths compared
to GaAs-based devices emitting at longer wavelengths.

In 2005, Choi et al achieved the first blue laser using a
GaN-based photonic crystal defect mode cavity [134]. The L7
photonic crystal membrane nanocavity, featuring seven absent
holes along the Γ–K direction of the triangular lattice photonic
crystal structure, was created through a photoelectrochemical
(PEC) etching technique combined with optimized low-power
etching methods [135–140]. The investigation focused on the
Q-factors of the mode in relation to the ratio between the lat-
tice constant and the radius of an air hole, revealing that a
smaller ratio is preferable for achieving robust spatial coup-
ling between the mode and the active region. This preference
arises because a photonic crystal with a smaller lattice constant
effectively prevents the maximum intensity displacement into
the air dielectric. However, this design exhibited limited output
power, restricting its applicability in high-power scenarios.

The second type, PCSELs, employs multidirectional
distributed feedback (DFB) near the band edges within 2D
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photonic crystal structures. In-plane coupling is induced by
specific band edges through DFB, causing diffraction in per-
pendicular directions [141–143]. This is a consequence of
the first-order Bragg diffraction for modes above the light
line. Consequently, PCSELs can effectively achieve expans-
ive single-mode operation across large areas, generating high
output power with narrow divergence angles through surface
emission [144–146].

In 2008, a significant advancement in GaN-based PCSELs
utilized air holes retained overgrowth combined with
nanofabrication [26]. The process included creating a GaN/air
periodic structure on n-GaN substrate through electron beam
lithography and dry etching. Adding a SiO2 layer at the bottom
of air holes prevented excess GaN growth. Overcoming chal-
lenges, low-pressure MOCVD growth ensured uniform air
hole arrangement. Capping top of the air holes prevented dis-
locations during regrowth, yielding a well-defined GaN-based
PCSEL. Resonant light coupling occurred when the in-plane
wave vector aligned with photonic bands, reaching a threshold
at 67 kA cm−2 under pulsed current operation. However, the
low refractive index contrast in III-nitride materials and the
lack of reliable techniques for forming impeccable nanostruc-
tures within GaN limit the strength of the 2D photonic-crystal
resonant effect.

S Noda’s group has pioneered a novel nanofabrication tech-
nique that eliminates the need for a SiO2 block layer, a signi-
ficant achievement realized over a decade after the research
mentioned above [28]. This was carried out to prevent the
introduction of significant structural disorders, which can lead
to scattering loss and material impurities that may impact the
device’s performance. To incorporate air holes beneath a GaN
film with a remarkably even surface, the growth conditions
were fine-tuned to promote lateral growth and mitigate mass-
transport phenomena exclusively. Ultimately, this optimized
regrowth and nanofabrication process successfully realized
a GaN-based PCSEL with a double-lattice photonic crystal
structure. These breakthroughs have allowed a GaN PCSEL’s
successful operation with a remarkably low threshold current
density of 2–3 kA cm−2 and a high output power of approx-
imately 320 mW.

In addition to the completed nanofabrication and regrowth
process, alternative photonic-crystal fabrication methods
exist. One such method involves utilizing a mass-transport
phenomenon to form crystallographic facets on the inner
walls of voids [147]. This technique observed lasing action at
406 nm for a photonic crystal lattice constant of 162.5 nm. The
threshold current density, ranging from 9.7 to 28.6 kA cm−2,
depends on the size of the p-contact electrode. Unfortunately,
this mass-transport approach suffers from the drawback of
compromising the uniformity of the GaN/air structure, and
coherent 2D oscillation is unattainable due to the square lat-
tice’s inability to sustain the necessary 2D optical coupling.

Furthermore, the GaN PCSEL was explored by investigat-
ing a combination of DBRs and GaN-based photonic crystal
structures [148]. These lasers demonstrate lasing action under
optical pumping at room temperature, with a threshold pump-
ing energy density of approximately 3.5 mJ cm−2. The laser

emits a dominant wavelength of 424.3 nm with a linewidth
of about 1.1 Å. The normalized frequency of the investigated
photonic crystal lasing wavelength corresponds to the calcu-
lated Brillouin-zone boundary provided by the 2D hexagonal-
lattice photonic crystal patterns [148]. GaN-based photonic
crystal nanobeam cavities, fabricated using electron-beam
lithography and focused-ion beam (FIB) milling, achieved a
high quality factor of 740 [149].

In 2020, Mi’s group developed all-epitaxial surface-
emitting green lasers utilizing GaN nanostructures [27]. This
approach achieved dislocation-free GaN nanocrystal arrays
using a selective area epitaxy growth technique. These diodes
utilize GaN nanostructures and stand out for their absence
of dislocations, achieved through efficient strain relaxation.
Figure 11 shows the design of InGaNNCSEL diodes operating
in the green wavelength. The fabrication involved employing
nano-hole Ti masks with a diameter of approximately 180 nm
and a lattice constant of 250 nm arranged in triangular lat-
tices. This intricate design of NCSELs was actualized through
e-beam lithography and a reactive ion dry-etching technique.
The active region, positioned on semipolar planes, encom-
passes multiple InGaN quantum disks and a unique AlGaN
shell structure designed to reduce the QCSE and suppress
surface recombination significantly. The hexagonally shaped
nanocrystals are arranged in a triangular lattice with a spacing
of approximately 30 nm, and the lattice constant is 250 nm.
This nanocrystal design facilitates both in-plane and out-of-
plane coupling.

The reciprocal lattice of the photonic crystal structure, with
its six equivalent G′′ points, induces in-plane coupling through
the Bragg grating vectors. Additionally, there is out-of-plane
coupling between the six G′′ points and the G point, resulting
in vertical surface emission. The InGaN NCSEL diodes oper-
ating at a wavelength of approximately 523 nm, the device
exhibits a threshold current of around 400 A cm−2 and an
output power of ∼12 mW at an injection current density
of ∼1 kA cm−2 under CW operation. This approach holds
great promise for advancing the field of surface-emitting laser
diodes with all-epitaxial structures.

In recent advancements, GaN-based epitaxial nanowire
photonic crystal structures have demonstrated significant pro-
gress in UV lasing. One notable study reported lasing at a
wavelength of 367 nm with an impressively low threshold of
7 kW cm−2, equivalent to approximately 49 µJ cm−2 [150].
Additionally, strong light emission under direct electric cur-
rent injection was observed at around 383 nm with a threshold
current of approximately 0.2 mA [151]. This achievement
not only marks a significant milestone in the development of
UV PCSEL but also lays the groundwork for the develop-
ment of surf lasers with customizable lasing wavelengths. This
advancement holds promise for a wide range of applications
such as high-resolution imaging and advanced communica-
tion technologies, due to the tunability and efficiency of these
nanowire photonic crystal structures.

In summary, GaN-based lasers utilizing photonic crystals
have advanced significantly, particularly in photonic crystal
defect mode cavity lasers and PCSELs. While offering high
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Figure 11. Design of InGaN NCSEL diodes operating in the green wavelength. (A) Schematic of the InGaN nanocrystal arrays for the
surface-emitting laser diode. (B) Diameter and lattice constant of the nanocrystals denoted as d and a, respectively. (C) Schematic of the
InGaN/AlGaN nanowire heterostructure. (D) The reciprocal lattice of a photonic crystal structure has six equivalent G! points. (E)
Calculated photonic band structure. (F) The electric field profile of the band edge mode (523 nm). (G) Photoluminescence spectrum of an
InGaN/AlGaN calibration sample showing spontaneous green emission [27]. From [27]. Reprinted with permission from AAAS.

Q-factors and low thresholds, defect mode lasers struggle
with etching challenges and limited output power. PCSELs or
NCSEL achieve high output power through multidirectional
feedback but face limitations from low refractive index con-
trast. Recent innovations, such as dislocation-free GaN nano-
structures, have further improved performance, indicating a
promising future for laser technology.

5. WGM lasers

WGM lasers utilize the whispering gallery effect, in which
light waves are confined within a circular (or spherical) struc-
ture through total internal reflection. This effect allows the
continuous propagation of light along the circumference of the
microdisk (or spherical structure), generating resonant modes
and facilitating laser operation. III-nitride microdisk lasers are
distinguished by their capacity to confine and amplify light in
a compact volume. They offer advantages such as high optical
gain, a minor mode volume, and low lasing thresholds. As
a result, these attributes make them suitable for a variety of
applications in photonics and telecommunications.

GaN-based microdisk lasers have attracted considerable
attention due to their exceptional characteristics [152–155].
A significant advancement occurred with the introduction of
PEC etching, allowing for the creation of undercut struc-
tures for GaN on sapphire substrates [156–160]. This break-
through paved the way for successfully demonstrating CW
blue lasing at room temperature. Remarkably, a very low
threshold of 300 W cm−2 was achieved in GaN microd-
isks containing InGaN QWs, as highlighted by Tamboli
et al [161].

Creating a mushroom structure is essential in the fabrica-
tion of GaN-based microdisk lasers. In addition to employ-
ing PEC etching of the InGaN superlattice sacrificial layer
[162], an alternative strategy involves using a KOH (potassium
hydroxide) solution to etch the oxidized AlInN sacrificial layer
[163]. Moreover, the transfer of III-nitride grown on sap-
phire substrates to Si represents an alternative method for
creating a mushroom structure [164, 165], as illustrated in
figure 12, depicting the schematic of the transfer process [166].
The GaN-based microdisk laser grown on sapphire can also
undergo transfer onto a polyethylene terephthalate substrate
[167]. While these approaches offer an advantage in utilizing
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Figure 12. Schematic diagrams illustrating the process flow of InGaN-based microdisk integrated on Si (100). Reprinted with permission
from [166]. © 2022 Optica Publishing Group.

the high crystalline quality of GaN on sapphire. However,
these complex processes can introduce challenges of potential
reliability issues and restrictions on the performance of GaN
microdisk lasers.

In addition to the intricate etching methods involving the
InGaN superlattice or AlInN sacrificial layer, another not-
able strategy for achieving undercut GaN microdisks is based
on utilizing GaN material grown directly on a Si substrate.
In 2006, Choi et al successfully demonstrated micro-lasers
based on pivoted GaNmicrodisk arrays on Si substrates [168].
The process involved growing GaN films on a Si substrate
and patterning using photolithography and dry etching tech-
niques. A small Si pedestal was created to provide mechan-
ical support for the microdisk through a wet etching process,
effectively removing the Si surrounding and underneath the
microdisks.

T. Guillet’s group expanded on these findings by show-
casing microdisk lasers operating under room-temperature
pulsed optical pumping across a wide spectral range from
275 to 470 nm, achieving a high-quality factor exceeding
1000 [169, 170]. Additionally, alternative strategies have been
explored to enhance the performance of GaNmicrodisk lasers.
These include using floating asymmetric circle and circle GaN
microdisks and employing floating large-size GaN microd-
isks with gratings [171]. T. Wang successfully achieved room-
temperature CW lasing from an InGaN microdisk on Si,
producing emission wavelengths of 442, 493, and 522 nm
[172, 173].

However, further development of GaNmicrodisk lasers has
been encountering severe high threshold problems. A method
to overcome this problem is the growth of QDs as active
regions.

Recent advancements in GaN QDWGM lasers have drawn
significant global attention due to their promising poten-
tial in various applications. The integration of QDs within

WGM structures enhances carrier confinement and recom-
bination efficiency, leading to improved temperature stabil-
ity and reduced lasing thresholds. The utilization of GaN QDs
presents inherent advantages over QWs [174–176]. The three-
dimensional confinement characteristic of QDs, serving as
the gain medium in nitride-based microdisk lasers, theoretic-
ally offers benefits such as low-threshold operation and high
optical gain [177, 178]. The combination of QDs and WGM
lasers exemplifies a cutting-edge approach in III-nitride semi-
conductor lasers, offering a path towards innovative solutions
and future technological breakthroughs.

GaN/AlN QD based microdisk lasers have set a noteworthy
record Q-factor of 7,300, boasting exceptionally low lasing
thresholds that reach as low as 60 W cm−2 [179]. Another
remarkable milestone has been achieved with a record-low
lasing threshold of 0.28 mJ cm−2 in GaN microdisks fea-
turing InGaN QDs and an impressive Q-factor of 6,600
[180]. Furthermore, substantial progress has been made by
Lau’s group in the development of ultra-low threshold green
InGaN QD microdisk lasers grown directly on Si substrates
[181]. Figure 13(a) illustrates the epitaxial configuration of
microdisk lasers on Si. Figure 13(b) shows a cross-sectional
TEM image showcasing the as-grown sample featuring a
three-stacked InGaN/GaNQD structure. Figure 13(c) presents
a detailed TEM image of the three-stacked QD active
region, highlighting the presence of uniformly aligned QD.
Figure 13(d) shows photoluminescence spectra at room tem-
perature. The microdisk laser fabrication process is shown in
figure 14. At an excitation power density of 0.4 kW cm−2, the
peak wavelength from the as-grown QDs on the Si is observed
at 545 nm, accompanied by a full-width-at-half- maximum
(FWHM) of 43 nm. The threshold is below 100 W cm−2 at
the emission wavelength of 522 nm.

In a distinct accomplishment, Hu’s group demonstrated that
GaN micro-rings incorporating InGaN QDs and fragmented
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Figure 13. (a) Schematic illustration of the epitaxial structure of material in the disk region; cross-sectional TEM image of (b) the microdisk
structure and (c) the three-stacked InGaN QDs; (d) room-temperature photoluminescence spectra of the as-grown QD microdisk lasers on Si
substrates at increasing excitation power densities from 0.4 to 47.8 kW cm−2. Reprinted from [181], with the permission of AIP Publishing.

Figure 14. Schematic process flow of the microdisk lasers. (a) 1.0 µm silica sphere deposition; (b) ICP etching forms a cylinder mesa
feature; (c) silica sphere removal; (d) wet etching forming the microdisks with a mushroom-shaped structure Reprinted from [181], with the
permission of AIP Publishing.

QWs achieved a record-low lasing threshold of 6.2 µJ cm−2,
as shown in figure 15 [29]. As the pump volume decreases, the
authors observed a systematic reduction in the lasing threshold
of micro-rings.

Q Sun’s group reported the initial observation of
room-temperature electrically pumped lasing in an
InGaN-basedmicrodisk laser diode grown on Si in 2018 [182].
The detailed schematic structure of this InGaN micro-ring
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Figure 15. (a) AFM images of uncapped InGaN epilayers on GaN. (b) Schematic showing the active layer composition. (c) The top and
side view SEM images of a microdisk and (d) a micro-ring with an inner diameter of 500 nm. (e) Spread of lasing thresholds in microdisks
and micro-rings of different geometries. Reproduced from [29]. CC BY 4.0.

Figure 16. (a) Schematic architectures and (b) detailed schematic structure of an InGaN micro-ring laser grown on Si with AlGaN cladding
layers. (c) Scanning electron microscopy and (d) transmission electron microscopy images of one as-fabricated InGaN micro-ring laser
grown on Si. Reprinted with permission from [182]. © 2018 Optical Society of America.

laser grown on Si with AlGaN cladding layers is shown in
figure 16. The InGaN-based microdisk lasers grown on Si are
designed with a ‘sandwich-like’ architecture, utilizing upper
and lower AlGaN cladding layers. This configuration was
implemented to confine the optical field within the microdisk
efficiently. The AlGaN cladding layers, possessing a lower
refractive index than GaN, are crucial in confining the optical
field from both the top and bottom directions.

Following the previous work, the authors advanced GaN-
based near-UV microdisk laser diodes, achieving a lasing
wavelength of 386.3 nm at room temperature [183]. To fur-
ther mitigate thermal power, they reduced the radius of the
microdisk laser to 8 µm [30]. As the device radius decreases
from 20 to 8 µm, the thermal resistance increases from 146
to 437 K W−1. Additionally, they significantly lowered the
threshold current and junction temperature by reducing the
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current injection area and device size [184]. Sun’s group
recently enhanced the performance of GaN-based microdisk
lasers by implementing a SiO2 passivation layer method [185].
They successfully demonstrated an initial on-chip integration
of a GaN-basedmicroring laser, waveguide, and photodetector
on a Si substrate [186].

GaN-based microdisk lasers have emerged as a signific-
ant area of research owing to their compact size and low
lasing thresholds, offering substantial potential for photonic
and telecommunication applications. Recent advancements in
fabrication techniques, such as PEC etching and the devel-
opment of undercut structures, have enabled the success-
ful demonstration of room-temperature lasing with excep-
tionally low thresholds. Innovations, including the integra-
tion of QD as active regions and the transfer of mater-
ials to Si substrates, have further enhanced the perform-
ance of these lasers. Ongoing research continues to address
challenges related to lasing thresholds and thermal manage-
ment, paving the way for the future of GaN microdisk laser
technology.

6. Conclusions and prospects

This review summarizes the recent progress of III-nitride
semiconductor lasers, particularly for four types of lasers,
GaN-based EELs, VCSELs, PCSELs (or NCSELs), and
WGM lasers. This review highlights the common goals
of achieving high efficiency, high output power, and low
lasing threshold across all laser types while also noting
that the strategies and techniques employed vary depend-
ing on the specific laser type and intended application.
Here we have discussed the different strategies and tech-
niques for the different kinds of lasers. To elucidate the
developmental trajectories of these lasers, this review
consolidates and summarizes the outcomes of reported
advancements in these four categories, as depicted in
figure 17.

The successful commercialization of GaN-based EELs
on GaN substrates has been achieved decades ago. Current

research endeavors aim to explore the feasibility of utilizing
cost-effective Si substrates, showcasing significant progress
in advancing room-temperature CW electrically injected
lasers on Si. This progress signifies the potential integra-
tion of GaN-based EELs with Si technologies. Despite these
accomplishments, challenges persist, necessitating ongoing
research to enhance the crystalline quality of GaN on Si
substrates. The exploration of employing EELs in handheld
pico-projection devices involved investigating reducing the
cavity length to enhance the laser threshold, which was also
reviewed.

This review also delves into the advancements in address-
ing design challenges and overcoming material quality
obstacles in VCSELs. A key focus is the feasibility of extend-
ing VCSELs to longer wavelengths, particularly in the green
spectrum. The discovery of low-threshold green VCSELs and
the adoption of QD-based solutions present promising oppor-
tunities for the future evolution of VCSEL technology.

Advancements in GaN-based PCSELs hold promise for
laser technology. Breakthroughs in nanofabrication and
regrowth processes have resulted in improved perform-
ance metrics. Challenges persist, including precise fabric-
ation and addressing uniformity issues through alternative
methods. Recent developments in all-epitaxial green lasers
exhibit promising features, and continued research is cru-
cial for overcoming fabrication challenges and expanding
applications, potentially revolutionizing laser design and
functionality.

GaN-based microdisks, particularly with breakthroughs
in PEC etching, demonstrate room-temperature CW blue
WGM lasing with low thresholds. Various fabrication meth-
ods contribute to this progress, such as mushroom struc-
tures and direct growth on Si substrates. QDs offer solutions
to high threshold issues, with GaN/AlN QD-based microd-
isks achieving record Q-factors and low thresholds. Recent
advancements include room-temperature electrically pumped
lasing on Si and optimizations in device architecture, with
ongoing efforts focusing on further high-quality GaN on Si
developments.
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Figure 17. Selected of reported data of (a) cavity length and emission wavelength for CW-operated GaN-based EELs at room temperature
by current injection (here solid stars represent lasers on GaN substrates and hollow stars represent on Si substrates) [10, 40, 47, 58, 63, 64];
(b) output power and emission wavelength for CW-operated GaN-based VCSELs at room temperature by current injection [25, 65, 83, 114,
115]; (c) lasing threshold current density and emission wavelength for GaN-based PCSELs or NCSELs at room temperature by current
injection (solid stars represent lasers operated under pulsed operation and hollow stars represent CW operation) [26–28, 147]; (d) lasing
threshold and emission wavelength for CW-operated optical pumped GaN-based WGM lasers [164, 171, 172, 179, 181, 187].
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